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Abstract

2-Opt is probably the most basic local search heuristic for the TSP. This heuris-
tic achieves amazingly good results on “real world” Euclidean instances both with
respect to running time and approximation ratio. There are numerous experimental
studies on the performance of 2-Opt. However, the theoretical knowledge about this
heuristic is still very limited. Not even its worst case running time on 2-dimensional
Euclidean instances was known so far. We clarify this issue by presenting, for every
p ∈ N, a family of Lp instances on which 2-Opt can take an exponential number of
steps.

Previous probabilistic analyses were restricted to instances in which n points
are placed uniformly at random in the unit square [0, 1]2, where it was shown that
the expected number of steps is bounded by Õ(n10) for Euclidean instances. We
consider a more advanced model of probabilistic instances in which the points can be
placed independently according to general distributions on [0, 1]d, for an arbitrary
d ≥ 2. In particular, we allow different distributions for different points. We study
the expected number of local improvements in terms of the number n of points
and the maximal density φ of the probability distributions. We show an upper
bound on the expected length of any 2-Opt improvement path of Õ(n4+1/3 · φ8/3).
When starting with an initial tour computed by an insertion heuristic, the upper
bound on the expected number of steps improves even to Õ(n4+1/3−1/d · φ8/3). If
the distances are measured according to the Manhattan metric, then the expected
number of steps is bounded by Õ(n4−1/d ·φ). In addition, we prove an upper bound
of O( d

√
φ) on the expected approximation factor with respect to all Lp metrics.

Let us remark that our probabilistic analysis covers as special cases the uniform
input model with φ = 1 and a smoothed analysis with Gaussian perturbations of
standard deviation σ with φ ∼ 1/σd.

∗This work was supported in part by the EU within the 6th Framework Programme under contract
001907 (DELIS), by DFG grants VO 889/2 and WE 2842/1, and by EPSRC grant EP/F043333/1.
An extended abstract appeared in Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007).
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1 Introduction

In the traveling salesperson problem (TSP), we are given a set of vertices and for each
pair of distinct vertices a distance. The goal is to find a tour of minimum length that
visits every vertex exactly once and returns to the initial vertex at the end. Despite many
theoretical analyses and experimental evaluations of the TSP, there is still a considerable
gap between the theoretical results and the experimental observations. One important
special case is the Euclidean TSP in which the vertices are points in Rd, for some d ∈ N,
and the distances are measured according to the Euclidean metric. This special case
is known to be NP-hard in the strong sense [Pap77], but it admits a polynomial time
approximation scheme (PTAS), shown independently in 1996 by Arora [Aro98] and
Mitchell [Mit99]. These approximation schemes are based on dynamic programming.
However, the most successful algorithms on practical instances rely on the principle of
local search and very little is known about their complexity.

The 2-Opt algorithm is probably the most basic local search heuristic for the TSP.
2-Opt starts with an arbitrary initial tour and incrementally improves this tour by
making successive improvements that exchange two of the edges in the tour with two
other edges. More precisely, in each improving step the 2-Opt algorithm selects two
edges {u1, u2} and {v1, v2} from the tour such that u1, u2, v1, v2 are distinct and appear
in this order in the tour, and it replaces these edges by the edges {u1, v1} and {u2, v2},
provided that this change decreases the length of the tour. The algorithm terminates
in a local optimum in which no further improving step is possible. We use the term
2-change to denote a local improvement made by 2-Opt. This simple heuristic performs
amazingly well on “real-life” Euclidean instances like, e.g., the ones in the well-known
TSPLIB [Rei91]. Usually the 2-Opt heuristic needs a clearly subquadratic number of
improving steps until it reaches a local optimum and the computed solution is within a
few percentage points of the global optimum [JM97].

There are numerous experimental studies on the performance of 2-Opt. However,
the theoretical knowledge about this heuristic is still very limited. Let us first discuss
the number of local improvement steps made by 2-Opt before it finds a locally optimal
solution. When talking about the number of local improvements, it is convenient to
consider the state graph. The vertices in this graph correspond to the possible tours
and an arc from a vertex v to a vertex u is contained if u is obtained from v by
performing an improving 2-Opt step. On the positive side, van Leeuwen and Schoone
consider a 2-Opt variant for the Euclidean plane in which only steps are allowed that
remove a crossing from the tour. Such steps can introduce new crossings, but van
Leeuwen and Schoone [vLS81] show that after O(n3) steps, 2-Opt finds a tour without
any crossing. On the negative side, Lueker [Lue75] constructs TSP instances whose
state graphs contain exponentially long paths. Hence, 2-Opt can take an exponential
number of steps before it finds a locally optimal solution. This result is generalized to
k-Opt, for arbitrary k ≥ 2, by Chandra, Karloff, and Tovey [CKT99]. These negative
results, however, use arbitrary graphs that cannot be embedded into low-dimensional
Euclidean space. Hence, they leave open the question as to whether it is possible to
construct Euclidean TSP instances on which 2-Opt can take an exponential number
of steps, which has explicitly been asked by Chandra, Karloff, and Tovey. We resolve
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this question by constructing such instances in the Euclidean plane. In chip design
applications, often TSP instances arise in which the distances are measured according to
the Manhattan metric. Also for this metric and for every other Lp metric, we construct
instances with exponentially long paths in the 2-Opt state graph.

Theorem 1.1. For every p ∈ {1, 2, 3, . . .} ∪ {∞} and n ∈ N = {1, 2, 3, . . .}, there is
a two-dimensional TSP instance with 16n vertices in which the distances are measured
according to the Lp metric and whose state graph contains a path of length 2n+4 − 22.

For Euclidean instances in which n points are placed independently uniformly at
random in the unit square, Kern [Ker89] shows that the length of the longest path in
the state graph is bounded by O(n16) with probability at least 1−c/n for some constant
c. Chandra, Karloff, and Tovey [CKT99] improve this result by bounding the expected
length of the longest path in the state graph by O(n10 log n). That is, independent of the
initial tour and the choice of the local improvements, the expected number of 2-changes
is bounded by O(n10 log n). For instances in which n points are placed uniformly at
random in the unit square and the distances are measured according to the Manhattan
metric, Chandra, Karloff, and Tovey show that the expected length of the longest path
in the state graph is bounded by O(n6 log n).

We consider a more general probabilistic input model and improve the previously
known bounds. The probabilistic model underlying our analysis allows different vertices
to be placed independently according to different continuous probability distributions
in the unit hypercube [0, 1]d, for some constant dimension d ≥ 2. The distribution of
a vertex vi is defined by a density function fi : [0, 1]d → [0, φ] for some given φ ≥ 1.
Our upper bounds depend on the number n of vertices and the upper bound φ on the
density. We denote instances created by this input model as φ-perturbed Euclidean or
Manhattan instances, depending on the underlying metric. The parameter φ can be seen
as a parameter specifying how close the analysis is to a worst case analysis since the
larger φ is, the better can worst case instances be approximated by the distributions. For
φ = 1 and d = 2, every point has a uniform distribution over the unit square, and hence
the input model equals the uniform model analyzed before. Our results narrow the gap
between the subquadratic number of improving steps observed in experiments [JM97]
and the upper bounds from the probabilistic analysis. With slight modifications, this
model also covers a smoothed analysis, in which first an adversary specifies the positions
of the points and after that each position is slightly perturbed by adding a Gaussian
random variable with small standard deviation σ. In this case, one has to set φ =
1/(
√

2πσ)d.
We prove the following theorem about the expected length of the longest path in

the 2-Opt state graph for the three probabilistic input models discussed above. It is
assumed that the dimension d ≥ 2 is an arbitrary constant.

Theorem 1.2. The expected length of the longest path in the 2-Opt state graph

a) is O(n4 · φ) for φ-perturbed Manhattan instances with n points.

b) is O(n4+1/3 · log(nφ) · φ8/3) for φ-perturbed Euclidean instances with n points.

Usually, 2-Opt is initialized with a tour computed by some tour construction heuris-
tic. One particular class is that of insertion heuristics, which insert the vertices one
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after another into the tour. We show that also from a theoretical point of view, using
such an insertion heuristic yields a significant improvement for metric TSP instances
because the initial tour 2-Opt starts with is much shorter than the longest possible tour.
In the following theorem, we summarize our results on the expected number of local
improvements.

Theorem 1.3. The expected number of steps performed by 2-Opt

a) is O(n4−1/d · log n · φ) on φ-perturbed Manhattan instances with n points when
2-Opt is initialized with a tour obtained by an arbitrary insertion heuristic.

b) is O(n4+1/3−1/d · log2(nφ) ·φ8/3) on φ-perturbed Euclidean instances with n points
when 2-Opt is initialized with a tour obtained by an arbitrary insertion heuristic.

In fact, our analysis shows not only that the expected number of local improvements
is polynomially bounded but it also shows that the second moment and hence the vari-
ance is bounded polynomially for φ-perturbed Manhattan instances. For the Euclidean
metric, we cannot bound the variance but the 3/2-th moment polynomially.

In [ERV07], we also consider a model in which an arbitrary graph G = (V,E) is
given along with, for each edge e ∈ E, a probability distribution according to which the
edge length d(e) is chosen independently of the other edge lengths. Again, we restrict
the choice of distributions to distributions that can be represented by density functions
fe : [0, 1]→ [0, φ] with maximal density at most φ for a given φ ≥ 1. We denote inputs
created by this input model as φ-perturbed graphs. Observe that in this input model
only the distances are perturbed whereas the graph structure is not changed by the
randomization. This can be useful if one wants to explicitly prohibit certain edges.
However, if the graph G is not complete, one has to initialize 2-Opt with a Hamiltonian
cycle to start with. We prove that in this model the expected length of the longest path
in the 2-Opt state graph is O(|E| ·n1+o(1) ·φ). As the techniques for proving this result
are different from the ones used in this article, we will present it in a separate journal
article.

As in the case of running time, the good approximation ratios obtained by 2-Opt
on practical instances cannot be explained by a worst-case analysis. In fact, there are
quite negative results on the worst-case behavior of 2-Opt. For example, Chandra,
Karloff, and Tovey [CKT99] show that there are Euclidean instances in the plane for

which 2-Opt has local optima whose costs are Ω
(

logn
log logn

)
times larger than the optimal

costs. However, the same authors also show that the expected approximation ratio of
the worst local optimum for instances with n points drawn uniformly at random from
the unit square is bounded from above by a constant. We generalize their result to
our input model in which different points can have different distributions with bounded
density φ and to all Lp metrics.

Theorem 1.4. Let p ∈ N ∪ {∞}. For φ-perturbed Lp instances, the expected approxi-
mation ratio of the worst tour that is locally optimal for 2-Opt is O( d

√
φ).

The remainder of the paper is organized as follows. We start by stating some basic
definitions and notation in Section 2. In Section 3, we present the lower bounds. In Sec-
tion 4, we analyze the expected number of local improvements and prove Theorems 1.2
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and 1.3. Finally, in Sections 5 and 6, we prove Theorem 1.4 about the expected ap-
proximation factor and we discuss the relation between our analysis and a smoothed
analysis.

2 Preliminaries

An instance of the TSP consists of a set V = {v1, . . . , vn} of vertices (depending on
the context, synonymously referred to as points) and a symmetric distance function
d : V × V → R≥0 that associates with each pair {vi, vj} of distinct vertices a distance
d(vi, vj) = d(vj , vi). The goal is to find a Hamiltonian cycle of minimum length. We
also use the term tour to denote a Hamiltonian cycle. We define N = {1, 2, 3, . . .}, and
for a natural number n ∈ N, we denote the set {1, . . . , n} by [n].

A pair (V, d) of a nonempty set V and a function d : V ×V → R≥0 is called a metric
space if for all x, y, z ∈ V the following properties are satisfied:

(a) d(x, y) = 0 if and only if x = y (reflexivity),

(b) d(x, y) = d(y, x) (symmetry), and

(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If (V, d) is a metric space, then d is called a metric on V . A TSP instance with vertices
V and distance function d is called metric TSP instance if (V, d) is a metric space.

A well-known class of metrics on Rd is the class of Lp metrics. For p ∈ N, the
distance dp(x, y) of two points x ∈ Rd and y ∈ Rd with respect to the Lp metric
is given by dp(x, y) = p

√
|x1 − y1|p + · · ·+ |xd − yd|p. The L1 metric is often called

Manhattan metric, and the L2 metric is well-known as Euclidean metric. For p → ∞,
the Lp metric converges to the L∞ metric defined by the distance function d∞(x, y) =
max{|x1 − y1|, . . . , |xd − yd|}. A TSP instance (V, d) with V ⊆ Rd in which d equals
dp restricted to V is called an Lp instance. We also use the terms Manhattan instance
and Euclidean instance to denote L1 and L2 instances, respectively. Furthermore, if p
is clear from context, we write d instead of dp.

A tour construction heuristic for the TSP incrementally constructs a tour and stops
as soon as a valid tour is created. Usually, a tour constructed by such a heuristic is
used as the initial solution 2-Opt starts with. A well-known class of tour construction
heuristics for metric TSP instances are so-called insertion heuristics. These heuristics
insert the vertices into the tour one after another, and every vertex is inserted between
two consecutive vertices in the current tour where it fits best. To make this more precise,
let Ti denote a subtour on a subset Si of i vertices, and suppose v /∈ Si is the next vertex
to be inserted. If (x, y) denotes an edge in Ti that minimizes d(x, v) + d(v, y)− d(x, y),
then the new tour Ti+1 is obtained from Ti by deleting the edge (x, y) and adding the
edges (x, v) and (v, y). Depending on the order in which the vertices are inserted into
the tour, one distinguishes between several different insertion heuristics. Rosenkrantz
et al. [RSI77] show an upper bound of dlog ne + 1 on the approximation factor of any
insertion heuristic on metric TSP instances. Furthermore, they show that two variants
which they call nearest insertion and cheapest insertion achieve an approximation ratio
of 2 for metric TSP instances. The nearest insertion heuristic always inserts the vertex
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with the smallest distance to the current tour (i.e., the vertex v /∈ Si that minimizes
minx∈Si d(x, v)), and the cheapest insertion heuristic always inserts the vertex whose
insertion leads to the cheapest tour Ti+1.

3 Exponential Lower Bounds

In this section, we answer Chandra, Karloff, and Tovey’s question [CKT99] as to whether
it is possible to construct TSP instances in the Euclidean plane on which 2-Opt can
take an exponential number of steps. We present, for every p ∈ N ∪ {∞}, a family of
two-dimensional Lp instances with exponentially long sequences of improving 2-changes.
In Section 3.1, we present our construction for the Euclidean plane, and in Section 3.2
we extend this construction to general Lp metrics.

3.1 Exponential Lower Bound for the Euclidean Plane

In Lueker’s construction [Lue75] many of the 2-changes remove two edges that are far
apart in the current tour in the sense that many vertices are visited between them.
Our construction differs significantly from the previous one as the 2-changes in our
construction affect the tour only locally. The instances we construct are composed of
gadgets of constant size. Each of these gadgets has a zero state and a one state, and
there exists a sequence of improving 2-changes starting in the zero state and eventually
leading to the one state. Let G0, . . . , Gn−1 denote these gadgets. If gadget Gi with
i > 0 has reached state one, then it can be reset to its zero state by gadget Gi−1. The
crucial property of our construction is that whenever a gadget Gi−1 changes its state
from zero to one, it resets gadget Gi twice. Hence, if in the initial tour, gadget G0 is in
its zero state and every other gadget is in state one, then for every i with 0 ≤ i ≤ n− 1,
gadget Gi performs 2i state changes from zero to one as, for i > 0, gadget Gi is reset 2i

times.
Every gadget is composed of 2 subgadgets, which we refer to as blocks. Each of

these blocks consists of 4 vertices that are consecutively visited in the tour. For i ∈
{0, . . . , n− 1} and j ∈ [2], let Bi1 and Bi2 denote the blocks of gadget Gi and let Aij , B

i
j ,

Cij , and Di
j denote the four points Bij consists of. If one ignores certain intermediate

configurations that arise when one gadget resets another one, our construction ensures
the following property: The points Aij , B

i
j , C

i
j , and Di

j are always visited consecutively

in the tour either in the order AijB
i
jC

i
jD

i
j or in the order AijC

i
jB

i
jD

i
j .

Observe that the change from one of these configurations to the other corresponds
to a single 2-change in which the edges AijB

i
j and CijD

i
j are replaced by the edges AijC

i
j

and Bi
jD

i
j , or vice versa. In the following, we assume that the sum d(Aij , B

i
j)+d(Cij , D

i
j)

is strictly smaller than the sum d(Aij , C
i
j) + d(Bi

j , D
i
j), and we refer to the configuration

AijB
i
jC

i
jD

i
j as the short state of the block and to the configuration AijC

i
jB

i
jD

i
j as the

long state. Another property of our construction is that neither the order in which
the blocks are visited nor the order of the gadgets is changed during the sequence of
2-changes. Again with the exception of the intermediate configurations, the order in
which the blocks are visited is B0

1B0
2B1

1B1
2 · · · Bn−1

1 Bn−1
2 (see Figure 3.1).
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A0
1

B0
1

D0
1

C0
1

A0
2

B0
2

D0
2

C0
2

Am
1

Bm
1

Dm
1

Cm
1

Am
2

Bm
2

Dm
2

Cm
2

. . .

Bm
1 Bm

2B0
2B0

1

G0 Gm

Figure 3.1: In the illustration, we use m to denote n − 1. Every tour that occurs in
the sequence of 2-changes contains the thick edges. For each block, either both solid or
both dashed edges are contained. In the former case the block is in its short state; in
the latter case the block is in its long state.

Due to the aforementioned properties, we can describe every non-intermediate tour
that occurs during the sequence of 2-changes completely by specifying for every block
if it is in its short state or in its long state. In the following, we denote the state of
a gadget Gi by a pair (x1, x2) with xj ∈ {S,L}, meaning that block Bij is in its short
state if and only if xj = S. Since every gadget consists of two blocks, there are four
possible states for each gadget. However, only three of them appear in the sequence
of 2-changes, namely (L,L), (S,L), and (S, S). We call state (L,L) the zero state and
state (S, S) the one state. In order to guarantee the existence of an exponentially long
sequence of 2-changes, the gadgets we construct possess the following property.

Property 3.1. If, for i ∈ {0, . . . , n − 2}, gadget Gi is in state (L,L) (or (S,L), re-
spectively) and gadget Gi+1 is in state (S, S), then there exists a sequence of seven
consecutive 2-changes terminating with gadget Gi being in state (S,L) (or state (S, S),
respectively) and gadget Gi+1 in state (L,L). In this sequence only edges of and between
the gadgets Gi and Gi+1 are involved.

We describe in Section 3.1.1 how sequences of seven consecutive 2-changes with the
desired properties can be constructed. Then we show in Section 3.1.2 that the gadgets
can be embedded into the Euclidean plane such that all of these 2-changes are improving.
If Property 3.1 is satisfied and if in the initial tour gadget G0 is in its zero state (L,L)
and every other gadget is in its one state (S, S), then there exists an exponentially long
sequence of 2-changes in which gadget Gi changes 2i times from state zero to state
one, as the following lemma shows. An example with three gadgets is also depicted in
Figure 3.2.

Lemma 3.2. If, for i ∈ {0, . . . , n − 1}, gadget Gi is in the zero state (L,L) and all
gadgets Gj with j > i are in the one state (S, S), then there exists a sequence of 2n+3−i−
14 consecutive 2-changes in which only edges of and between the gadgets Gj with j ≥ i
are involved and that terminates in a state in which all gadgets Gj with j ≥ i are in the
one state (S, S).

Proof. We prove the lemma by induction on i. If gadget Gn−1 is in state (L,L), then it
can change its state with two 2-changes to (S, S) without affecting the other gadgets.
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B0
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2 B2
1 B2

2

S L S S L L

B0
1 B0

2 B1
1 B1

2 B2
1 B2

2

S L S S S L

B0
1 B0

2 B1
1 B1

2 B2
1 B2

2

S L S S S S

B1
1 B1

2 B2
1 B2

2

L L S S

B1
1 B1

2 B2
1 B2

2

S L L L

B1
1 B1

2 B2
1 B2

2

S L S L

B1
1 B1

2 B2
1 B2

2

S L S S

B1
1 B1

2 B2
1 B2

2

S S L L

B1
1 B1

2 B2
1 B2

2

S S S L

B1
1 B1

2 B2
1 B2

2

S S S S

B0
1 B0

2

S S

B0
1 B0

2

S S

B0
1 B0

2

S S

B0
1 B0

2

S S

B0
1 B0

2

S S

B0
1 B0

2

S S

B0
1 B0

2

S S

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

Figure 3.2: This figure shows an example with three gadgets. It shows the 15 con-
figurations that these gadgets assume during the sequence of 2-changes, excluding the
intermediate configurations that arise when one gadget resets another one. Gadgets
that are involved in the transformation from configuration i to configuration i + 1 are
shown in gray. For example, in the step from the first to the second configuration, the
first block B0

1 of gadget G0 resets the two blocks of gadget G1. That is, these three
blocks follow the sequence of seven 2-changes from Property 3.1. On the other hand, in
the step from the third to the fourth configuration only the first block B2

1 of gadget G2

is involved. It changes from its long state to its short state by a single 2-change. As this
figure shows an example with three gadgets, the total number of 2-changes performed
according to Lemma 3.2 is 23+3−0 − 14 = 50. This is indeed the case because 6 of the
14 shown steps correspond to sequences of seven 2-changes while 8 steps correspond to
single 2-changes.

This is true because the two blocks of gadget Gn−1 can, one after another, change from
their long state An−1

j Cn−1
j Bn−1

j Dn−1
j to their short state An−1

j Bn−1
j Cn−1

j Dn−1
j by a

single 2-change. Hence, the lemma is true for i = n− 1 because 2n+3−(n−1) − 14 = 2.
Now assume that the lemma is true for i+1 and consider a state in which gadget Gi

is in state (L,L) and all gadgets Gj with j > i are in state (S, S). Due to Property 3.1,
there exists a sequence of seven consecutive 2-changes in which only edges of and between
Gi and Gi+1 are involved, terminating with Gi being in state (S,L) and Gi+1 being in
state (L,L). By the induction hypothesis there exists a sequence of (2n+2−i − 14)
2-changes after which all gadgets Gj with j > i are in state (S, S). Then, due to
Property 3.1, there exists a sequence of seven consecutive 2-changes in which only Gi
changes its state from (S,L) to (S, S) while resetting gadget Gi+1 again from (S, S) to
(L,L). Hence, we can apply the induction hypothesis again, yielding that after another
(2n+2−i−14) 2-changes all gadgets Gj with j ≥ i are in state (S, S). This concludes the
proof as the number of 2-changes performed is 14 + 2(2n+2−i − 14) = 2n+3−i − 14.
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In particular, this implies that, given Property 3.1, one can construct instances
consisting of 2n gadgets, i.e., 16n points, whose state graphs contain paths of length
22n+3 − 14 > 2n+4 − 22, as desired in Theorem 1.1.

3.1.1 Detailed description of the sequence of steps

Now we describe in detail how a sequence of 2-changes satisfying Property 3.1 can be
constructed. First, we assume that gadget Gi is in state (S,L) and that gadget Gi+1

is in state (S, S). Under this assumption, there are three consecutive blocks, namely
Bi2, Bi+1

1 , and Bi+1
2 , such that the leftmost one Bi2 is in its long state, and the other

blocks are in their short states. We need to find a sequence of 2-changes in which only
edges of and between these three blocks are involved and after which Bi2 is in its short
state and the other blocks are in their long states. Remember that when the edges
{u1, u2} and {v1, v2} are removed from the tour and the vertices appear in the order
u1, u2, v1, v2 in the current tour, then the edges {u1, v1} and {u2, v2} are added to the
tour and the subtour between u1 and v2 is visited in reverse order. If, e.g., the current
tour corresponds to the permutation (1, 2, 3, 4, 5, 6, 7) and the edges {1, 2} and {5, 6} are
removed, then the new tour is (1, 5, 4, 3, 2, 6, 7). The following sequence of 2-changes,
which is also shown in Figure 3.3, has the desired properties. Brackets indicate the
edges that are removed from the tour.

Long state ACBD Short state ABCD Short state ABCD

1)
[
Ai2 Ci2

]
Bi

2 Di
2 Ai+1

1 Bi+1
1 Ci+1

1 Di+1
1 Ai+1

2 Bi+1
2

[
Ci+1

2 Di+1
2

]
2) Ai2 Ci+1

2

[
Bi+1

2 Ai+1
2

]
Di+1

1 Ci+1
1 Bi+1

1 Ai+1
1

[
Di

2 Bi
2

]
Ci2 Di+1

2

3) Ai2 Ci+1
2

[
Bi+1

2 Di
2

]
Ai+1

1 Bi+1
1

[
Ci+1

1 Di+1
1

]
Ai+1

2 Bi
2 Ci2 Di+1

2

4) Ai2 Ci+1
2 Bi+1

2 Ci+1
1

[
Bi+1

1 Ai+1
1

]
Di

2 Di+1
1 Ai+1

2 Bi
2

[
Ci2 Di+1

2

]
5)

[
Ai2 C

i+1
2

]
Bi+1

2 Ci+1
1 Bi+1

1 Ci2
[
Bi

2 Ai+1
2

]
Di+1

1 Di
2 Ai+1

1 Di+1
2

6) Ai2 Bi
2 Ci2 Bi+1

1

[
Ci+1

1 Bi+1
2

]
Ci+1

2 Ai+1
2 Di+1

1 Di
2

[
Ai+1

1 Di+1
2

]
7) Ai2 Bi

2

[
Ci2 Bi+1

1

]
Ci+1

1 Ai+1
1

[
Di

2 Di+1
1

]
Ai+1

2 Ci+1
2 Bi+1

2 Di+1
2

Ai2 Bi
2 Ci2 Di

2 Ai+1
1 Ci+1

1 Bi+1
1 Di+1

1 Ai+1
2 Ci+1

2 Bi+1
2 Di+1

2

Short state ABCD Long state ACBD Long state ACBD

Observe that the configurations 2 to 7 do not have the property mentioned at the
beginning of this section that, for every block Bij , the points Aij , B

i
j , C

i
j , and Di

j are

visited consecutively either in the order AijB
i
jC

i
jD

i
j or in the order AijC

i
jB

i
jD

i
j . The

configurations 2 to 7 are exactly the intermediate configurations that we mentioned at
the beginning of this section.

If gadget Gi is in state (L,L) instead of state (S,L), a sequence of steps that satisfies
Property 3.1 can be constructed analogously. Additionally, one has to take into account
that the three involved blocks Bi1, Bi+1

1 , and Bi+1
2 are not consecutive in the tour but

that block Bi2 lies between them. However, one can easily verify that this block is not
affected by the sequence of 2-changes, as after the seven 2-changes have been performed,
the block is in the same state and at the same position as before.
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2
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Figure 3.3: This figure shows the sequence of seven consecutive 2-changes from Prop-
erty 3.1. In each step the thick edges are removed from the tour, and the dotted edges
are added to the tour. It shows how block Bi2 switches from its long to its short state
while resetting the blocks Bi+1

1 and Bi+1
2 from their short to their long states. This

figure is only schematic and it does not show the actual geometric embedding of the
points into the Euclidean plane.
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3.1.2 Embedding the construction into the Euclidean plane

The only missing step in the proof of Theorem 1.1 for the Euclidean plane is to find
points such that all of the 2-changes that we described in the previous section are
improving. We specify the positions of the points of gadget Gn−1 and give a rule as to
how the points of gadget Gi can be derived when all points of gadget Gi+1 have already
been placed. In our construction it happens that different points have exactly the same
coordinates. This is only for ease of notation; if one wants to obtain a TSP instance
in which distinct points have distinct coordinates, one can slightly move these points
without affecting the property that all 2-changes are improving.

For j ∈ [2], we choose An−1
j = (0, 0), Bn−1

j = (1, 0), Cn−1
j = (−0.1, 1.4), and Dn−1

j =

(−1.1, 4.8). Then An−1
j Bn−1

j Cn−1
j Dn−1

j is the short state and An−1
j Cn−1

j Bn−1
j Dn−1

j is
the long state because

d(An−1
j , Cn−1

j ) + d(Bn−1
j , Dn−1

j ) > d(An−1
j , Bn−1

j ) + d(Cn−1
j , Dn−1

j ),

as
d(An−1

j , Cn−1
j ) + d(Bn−1

j , Dn−1
j ) =

√
0.12 + 1.42 +

√
2.12 + 4.82 > 6.64

and
d(An−1

j , Bn−1
j ) + d(Cn−1

j , Dn−1
j ) =

√
12 + 02 +

√
12 + 3.42 < 4.55.

We place the points of gadget Gi as follows (see Figure 3.4):

1. Start with the coordinates of the points of gadget Gi+1.

2. Rotate these points around the origin by 3π/2.

3. Scale each coordinate by a factor of 3.

4. Translate the points by the vector (−1.2, 0.1).

For j ∈ [2], this yields An−2
j = (−1.2, 0.1), Bn−2

j = (−1.2,−2.9), Cn−2
j = (3, 0.4), and

Dn−2
j = (13.2, 3.4).

From this construction it follows that each gadget is a scaled, rotated, and translated
copy of gadget Gn−1. If one has a set of points in the Euclidean plane that admits certain
improving 2-changes, then these 2-changes are still improving if one scales, rotates, and
translates all points in the same manner. Hence, it suffices to show that the sequences
in which gadget Gn−2 resets gadget Gn−1 from (S, S) to (L,L) are improving because,
for any i, the points of the gadgets Gi and Gi+1 are a scaled, rotated, and translated
copy of the points of the gadgets Gn−2 and Gn−1.

There are two sequences in which gadget Gn−2 resets gadget Gn−1 from (S, S) to
(L,L): in the first one, gadget Gn−2 changes its state from (L,L) to (S,L), in the second
one, gadget Gn−2 changes its state from (S,L) to (S, S). Since the coordinates of the
points in both blocks of gadget Gn−2 are the same, the inequalities for both sequences
are also identical. The following inequalities show that the improvements made by the
steps in both sequences are all positive (see Figure 3.3 or the table in Section 3.1.1 for

11



bc bc

bc

bc

bc

bc

bc

bc

An−1
j Bn−1

j

Cn−1
j

Dn−1
j

An−2
j

Bn−2
j

Cn−2
j

Dn−2
j

Figure 3.4: This illustration shows the points of the gadgets Gn−1 and Gn−2. One can
see that Gn−2 is a scaled, rotated, and translated copy of Gn−1.

the sequence of 2-changes):

1) d(An−2
2 , Cn−2

2 ) + d(Cn−1
2 , Dn−1

2 ) − d(An−2
2 , Cn−1

2 ) − d(Cn−2
2 , Dn−1

2 ) > 0.03,

2) d(Bn−1
2 , An−1

2 ) + d(Dn−2
2 , Bn−2

2 ) − d(Bn−1
2 , Dn−2

2 )− d(An−1
2 , Bn−2

2 ) > 0.91,

3) d(Bn−1
2 , Dn−2

2 ) + d(Cn−1
1 , Dn−1

1 ) − d(Bn−1
2 , Cn−1

1 ) − d(Dn−2
2 , Dn−1

1 ) > 0.06,

4) d(Bn−1
1 , An−1

1 ) + d(Cn−2
2 , Dn−1

2 ) − d(Bn−1
1 , Cn−2

2 ) − d(An−1
1 , Dn−1

2 ) > 0.05,

5) d(An−2
2 , Cn−1

2 ) + d(Bn−2
2 , An−1

2 ) − d(An−2
2 , Bn−2

2 ) − d(Cn−1
2 , An−1

2 ) > 0.43,

6) d(Cn−1
1 , Bn−1

2 ) + d(An−1
1 , Dn−1

2 ) − d(Cn−1
1 , An−1

1 ) − d(Bn−1
2 , Dn−1

2 ) > 0.06,

7) d(Cn−2
2 , Bn−1

1 ) + d(Dn−2
2 , Dn−1

1 )− d(Cn−2
2 , Dn−2

2 ) − d(Bn−1
1 , Dn−1

1 ) > 0.53.

This concludes the proof of Theorem 1.1 for the Euclidean plane as it shows that all
2-changes in Lemma 3.2 are improving.

3.2 Exponential Lower Bound for Lp Metrics

We were not able to find a set of points in the plane such that all 2-changes in Lemma 3.2
are improving with respect to the Manhattan metric. Therefore, we modify the construc-
tion of the gadgets and the sequence of 2-changes. Our construction for the Manhattan
metric is based on the construction for the Euclidean plane, but it does not possess the
property that every gadget resets its neighboring gadget twice. This property is only
true for half of the gadgets. To be more precise, we construct two different types of
gadgets which we call reset gadgets and propagation gadgets. Reset gadgets perform the
same sequence of 2-changes as the gadgets that we constructed for the Euclidean plane.
Propagation gadgets also have the same structure as the gadgets for the Euclidean plane,
but when such a gadget changes its state from (L,L) to (S, S), it resets its neighboring
gadget only once. Due to this relaxed requirement it is possible to find points in the
Manhattan plane whose distances satisfy all necessary inequalities. Instead of n gadgets,
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our construction consists of 2n gadgets, namely n propagation gadgets GP0 , . . . , G
P
n−1

and n reset gadgets GR0 , . . . , G
R
n−1. The order in which these gadgets appear in the tour

is GP0 G
R
0 G

P
1 G

R
1 . . . G

P
n−1G

R
n−1.

As before, every gadget consists of two blocks and the order in which the blocks
and the gadgets are visited does not change during the sequence of 2-changes. Consider
a reset gadget GRi and its neighboring propagation gadget GPi+1. We will embed the
points of the gadgets into the Manhattan plane in such a way that Property 3.1 is still
satisfied. That is, if GRi is in state (L,L) (or state (S,L), respectively) and GPi+1 is in
state (S, S), then there exists a sequence of seven consecutive 2-changes resetting gadget
GPi+1 to state (L,L) and leaving gadget GRi in state (S,L) (or (S, S), respectively). The
situation is different for a propagation gadget GPi and its neighboring reset gadget GRi .
In this case, if GPi is in state (L,L), it first changes its state with a single 2-change to
(S,L). After that, gadget GPi changes its state to (S, S) while resetting gadget GRi from
state (S, S) to state (L,L) by a sequence of seven consecutive 2-changes. In both cases,
the sequences of 2-changes in which one block changes from its long to its short state
while resetting two blocks of the neighboring gadget from their short to their long states
are chosen analogously to the ones for the Euclidean plane described in Section 3.1.1.
An example with three propagation and three reset gadgets is shown in Figure 3.5.

In the initial tour, only gadget GP0 is in state (L,L) and every other gadget is in state
(S, S). With similar arguments as for the Euclidean plane, we can show that gadget
GRi is reset from its one state (S, S) to its zero state (L,L) 2i times and that the total
number of steps is 2n+4 − 22.

3.2.1 Embedding the construction into the Manhattan plane

As in the construction in the Euclidean plane, the points in both blocks of a reset gadget
GRi have the same coordinates. Also in this case one can slightly move all the points with-
out affecting the inequalities if one wants distinct coordinates for distinct points. Again,
we choose points for the gadgets GPn−1 and GRn−1 and describe how the points of the gad-
gets GPi and GRi can be chosen when the points of the gadgets GPi+1 and GRi+1 are already

chosen. For j ∈ [2], we choose An−1
R,j = (0, 1), Bn−1

R,j = (0, 0), Cn−1
R,j = (−0.7, 0.1), and

Dn−1
R,j = (−1.2, 0.08). Furthermore, we choose An−1

P,1 = (−2, 1.8), Bn−1
P,1 = (−3.3, 2.8),

Cn−1
P,1 = (−1.3, 1.4), Dn−1

P,1 = (1.5, 0.9), An−1
P,2 = (−0.7, 1.6), Bn−1

P,2 = (−1.5, 1.2), Cn−1
P,2 =

(1.9,−1.5), and Dn−1
P,2 = (−0.8,−1.1).

Before we describe how the points of the other gadgets are chosen, we first show
that the 2-changes within and between the gadgets GPn−1 and GRn−1 are improving. For
j ∈ [2], An−1

R,j B
n−1
R,j C

n−1
R,j D

n−1
R,j is the short state because

d(An−1
R,j , C

n−1
R,j ) + d(Bn−1

R,j , D
n−1
R,j )− (d(An−1

R,j , B
n−1
R,j ) + d(Cn−1

R,j , D
n−1
R,j ))

= (0.7 + 0.9) + (1.2 + 0.08)− (0 + 1)− (0.5 + 0.02) = 1.36.

In the 2-change in whichGPn−1 changes its state from (L,L) to (S,L) the edgesAn−1
P,1 , C

n−1
P,1

and Bn−1
P,1 , D

n−1
P,1 are replaced with the edges An−1

P,1 , B
n−1
P,1 and Cn−1

P,1 , D
n−1
P,1 . This 2-change
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Figure 3.5: This figure shows an example with three propagation and three reset gadgets.
It shows the first 16 configurations that these gadgets assume during the sequence of
2-changes, excluding the intermediate configurations that arise when one gadget resets
another one. Gadgets that are involved in the transformation from configuration i to
configuration i + 1 are shown in gray. For example, in the step from the first to the
second configuration, the first block BP,01 of the first propagation gadget GP0 switches
from its long to its short state by a single 2-change. Then in the step from the second
to the third configuration, the second block BP,02 of the first propagation gadget GP0
resets the two blocks of the first reset gadget GR0 . That is, these three blocks follow the
sequence of seven 2-changes from Property 3.1.
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is improving because

d(An−1
P,1 , C

n−1
P,1 ) + d(Bn−1

P,1 , D
n−1
P,1 )− (d(An−1

P,1 , B
n−1
P,1 ) + d(Cn−1

P,1 , D
n−1
P,1 ))

= (0.7 + 0.4) + (4.8 + 1.9)− (1.3 + 1)− (2.8 + 0.5) = 2.2.

The 2-changes in the sequence in which GPn−1 changes its state from (S,L) to (S, S)
while resetting GRn−1 are chosen analogously to the ones shown in Figure 3.3 and in
the table in Section 3.1.1. The only difference is that the involved blocks are not Bi2,
Bi+1

1 , and Bi+1
2 anymore, but the second block of gadget GPn−1 and the two blocks of

gadget GRn−1, respectively. This gives rise to the following equalities that show that the
improvements made by the 2-changes in this sequence are all positive:

1) d(An−1
P,2 , C

n−1
P,2 ) + d(Cn−1

R,2 , D
n−1
R,2 ) − d(An−1

P,2 , C
n−1
R,2 ) − d(Cn−1

P,2 , D
n−1
R,2 ) = 0.04,

2) d(Bn−1
R,2 , A

n−1
R,2 ) + d(Dn−1

P,2 , B
n−1
P,2 ) − d(Bn−1

R,2 , D
n−1
P,2 )− d(An−1

R,2 , B
n−1
P,2 ) = 0.4,

3) d(Bn−1
R,2 , D

n−1
P,2 ) + d(Cn−1

R,1 , D
n−1
R,1 ) − d(Bn−1

R,2 , C
n−1
R,1 ) − d(Dn−1

P,2 , D
n−1
R,1 ) = 0.04,

4) d(Bn−1
R,1 , A

n−1
R,1 ) + d(Cn−1

P,2 , D
n−1
R,2 ) − d(Bn−1

R,1 , C
n−1
P,2 ) − d(An−1

R,1 , D
n−1
R,2 ) = 0.16,

5) d(An−1
P,2 , C

n−1
R,2 ) + d(Bn−1

P,2 , A
n−1
R,2 ) − d(An−1

P,2 , B
n−1
P,2 ) − d(Cn−1

R,2 , A
n−1
R,2 ) = 0.4,

6) d(Cn−1
R,1 , B

n−1
R,2 ) + d(An−1

R,1 , D
n−1
R,2 ) − d(Cn−1

R,1 , A
n−1
R,1 ) − d(Bn−1

R,2 , D
n−1
R,2 ) = 0.04,

7) d(Cn−1
P,2 , B

n−1
R,1 ) + d(Dn−1

P,2 , D
n−1
R,1 )− d(Cn−1

P,2 , D
n−1
P,2 ) − d(Bn−1

R,1 , D
n−1
R,1 ) = 0.6.

Again, our construction possesses the property that each pair of gadgets GPi and GRi
is a scaled and translated version of the pair GPn−1 and GRn−1. Since we have relaxed the
requirements for the gadgets, we do not even need rotations here. We place the points
of GPi and GRi as follows:

1. Start with the coordinates specified for the points of gadgets GPi+1 and GRi+1.

2. Scale each coordinate by a factor of 7.7.

3. Translate the points by the vector (1.93, 0.3).

For j ∈ [2], this yields An−2
R,j = (1.93, 8), Bn−2

R,j = (1.93, 0.3), Cn−2
R,j = (−3.46, 1.07),

and Dn−2
R,j = (−7.31, 0.916). Additionally, it yields An−2

P,1 = (−13.47, 14.16), Bn−2
P,1 =

(−23.48, 21.86), Cn−2
P,1 = (−8.08, 11.08), Dn−2

P,1 = (13.48, 7.23), An−2
P,2 = (−3.46, 12.62),

Bn−2
P,2 = (−9.62, 9.54), Cn−2

P,2 = (16.56,−11.25), and Dn−2
P,2 = (−4.23,−8.17).

As in our construction for the Euclidean plane, it suffices to show that the sequences
in which gadget GRn−2 resets gadget GPn−1 from (S, S) to (L,L) are improving because,
for any i, the points of the gadgets GRi and GPi+1 are a scaled and translated copy
of the points of the gadgets GRn−2 and GPn−1. The 2-changes in these sequences are
chosen analogously to the ones shown in Figure 3.3 and in the table in Section 3.1.1.
The only difference is that the involved blocks are not Bi2, Bi+1

1 , and Bi+1
2 anymore,

but one of the blocks of gadget GRn−2 and the two blocks of gadget GPn−1, respectively.
As the coordinates of the points in the two blocks of gadget GRn−2 are the same, the
inequalities for both sequences are also identical. The improvements made by the steps
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in both sequences are

1) d(An−2
R,2 , C

n−2
R,2 ) + d(Cn−1

P,2 , D
n−1
P,2 ) − d(An−2

R,2 , C
n−1
P,2 ) − d(Cn−2

R,2 , D
n−1
P,2 ) = 1.06

2) d(Bn−1
P,2 , A

n−1
P,2 ) + d(Dn−2

R,2 , B
n−2
R,2 ) − d(Bn−1

P,2 , D
n−2
R,2 )− d(An−1

P,2 , B
n−2
R,2 ) = 1.032,

3) d(Bn−1
P,2 , D

n−2
R,2 ) + d(Cn−1

P,1 , D
n−1
P,1 ) − d(Bn−1

P,2 , C
n−1
P,1 ) − d(Dn−2

R,2 , D
n−1
P,1 ) = 0.168,

4) d(Bn−1
P,1 , A

n−1
P,1 ) + d(Cn−2

R,2 , D
n−1
P,2 ) − d(Bn−1

P,1 , C
n−2
R,2 ) − d(An−1

P,1 , D
n−1
P,2 ) = 1.14,

5) d(An−2
R,2 , C

n−1
P,2 ) + d(Bn−2

R,2 , A
n−1
P,2 ) − d(An−2

R,2 , B
n−2
R,2 ) − d(Cn−1

P,2 , A
n−1
P,2 ) = 0.06,

6) d(Cn−1
P,1 , B

n−1
P,2 ) + d(An−1

P,1 , D
n−1
P,2 ) − d(Cn−1

P,1 , A
n−1
P,1 ) − d(Bn−1

P,2 , D
n−1
P,2 ) = 0.4,

7) d(Cn−2
R,2 , B

n−1
P,1 ) + d(Dn−2

R,2 , D
n−1
P,1 )− d(Cn−2

R,2 , D
n−2
R,2 ) − d(Bn−1

P,1 , D
n−1
P,1 ) = 0.012.

This concludes the proof of Theorem 1.1 for the Manhattan metric as it shows that all
2-changes are improving.

Let us remark that this also implies Theorem 1.1 for the L∞ metric because distances
with respect to the L∞ metric coincide with distances with respect to the Manhattan
metric if one rotates all points by π/4 around the origin and scales every coordinate by
1/
√

2.

3.2.2 Embedding the construction into general Lp metrics

It is also possible to embed our Manhattan construction into the Lp metric for p ∈ N
with p ≥ 3. For j ∈ [2], we choose An−1

R,j = (0, 1), Bn−1
R,j = (0, 0), Cn−1

R,j = (3.5, 3.7), and

Dn−1
R,j = (7.8,−3.2). Moreover, we choose An−1

P,1 = (−2.5,−2.4), Bn−1
P,1 = (−4.7,−7.3),

Cn−1
P,1 = (−8.6,−4.6), Dn−1

P,1 = (3.7, 9.8), An−1
P,2 = (3.2, 2), Bn−1

P,2 = (7.2, 7.2), Cn−1
P,2 =

(−6.5,−1.6), and Dn−1
P,2 = (−1.5,−7.1). We place the points of GPi and GRi as follows:

1. Start with the coordinates specified for the points of gadgets GPi+1 and GRi+1.

2. Rotate these points around the origin by π.

3. Scale each coordinate by a factor of 7.8.

4. Translate the points by the vector (7.2, 5.3).

For j ∈ [2], this yields An−2
R,j = (7.2,−2.5), Bn−2

R,j = (7.2, 5.3), Cn−2
R,j = (−20.1,−23.56),

and Dn−2
R,j = (−53.64, 30.26). Additionally, it yields An−2

P,1 = (26.7, 24.02), Bn−2
P,1 =

(43.86, 62.24), Cn−2
P,1 = (74.28, 41.18), Dn−2

P,1 = (−21.66,−71.14), An−2
P,2 = (−17.76,−10.3),

Bn−2
P,2 = (−48.96,−50.86), Cn−2

P,2 = (57.9, 17.78), and Dn−2
P,2 = (18.9, 60.68).

It needs to be shown that the distances of these points when measured according to
the Lp metric for any p ∈ N with p ≥ 3 satisfy all necessary inequalities, that is, all 16
inequalities that we have verified in the previous section for the Manhattan metric. Let
us start by showing that for j ∈ [2], An−1

R,j B
n−1
R,j C

n−1
R,j D

n−1
R,j is the short state. For this,

we have to prove the following inequality for every p ∈ N with p ≥ 3:

dp(A
n−1
R,j , C

n−1
R,j ) + dp(B

n−1
R,j , D

n−1
R,j )− (dp(A

n−1
R,j , B

n−1
R,j ) + dp(C

n−1
R,j , D

n−1
R,j )) > 0

⇐⇒ p
√

3.5p + 2.7p + p
√

7.8p + 3.2p − p
√

0p + 1p − p
√

4.3p + 6.9p > 0.
(3.1)
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For p = ∞, the inequality is satisfied as the left side equals 3.4 when distances are
measured according to the L∞ metric. In order to show that the inequality is also
satisfied for every p ∈ N with p ≥ 3, we analyze by how much the distances dp deviate
from the distances d∞. For p ∈ N with p ≥ 3, we obtain

p
√

4.3p + 6.9p− 6.9 = 6.9 ·
(

p

√
1 +

(
4.3
6.9

)p − 1

)
≤ 6.9 ·

(
3

√
1 +

(
4.3
6.9

)3 − 1

)
< 0.52. (3.2)

Hence,

p
√

3.5p + 2.7p + p
√

7.8p + 3.2p− p
√

0p + 1p− p
√

4.3p + 6.9p ≥ 3.5 + 7.8− 1− 6.9− 0.52 > 0,

which proves that An−1
R,j B

n−1
R,j C

n−1
R,j D

n−1
R,j is the short state for every p ∈ N with p ≥ 3.

Next we argue that also the 2-change in which GPn−1 changes its state from (L,L) to
(S,L) is improving. For this, the following inequality needs to be verified for every p ∈ N
with p ≥ 3:

d(An−1
P,1 , C

n−1
P,1 ) + d(Bn−1

P,1 , D
n−1
P,1 )− (d(An−1

P,1 , B
n−1
P,1 )− d(Cn−1

P,1 , D
n−1
P,1 )) > 0

⇐⇒ p
√

6.1p + 2.2p + p
√

8.4p + 17.1p − p
√

2.2p + 4.9p − p
√

12.3p + 14.4p > 0.

As before, we obtain for p ∈ N with p ≥ 3

p
√

2.2p + 4.9p − 4.9 = 4.9 ·
(

p

√
1 +

(
2.2
4.9

)p − 1

)
≤ 4.9 ·

(
3

√
1 +

(
2.2
4.9

)3 − 1

)
< 0.15

and

p
√

12.3p + 14.4p−14.4 = 14.4 ·
(

p

√
1 +

(
12.3
14.4

)p − 1

)
≤ 14.4 ·

(
3

√
1 +

(
12.3
14.4

)3 − 1

)
< 2.53.

This implies for p ∈ N with p ≥ 3

p
√

6.1p + 2.2p + p
√

8.4p + 17.1p − p
√

2.2p + 4.9p − p
√

12.3p + 14.4p

≥ 6.1 + 17.1− 4.9− 0.15− 14.4− 2.53 > 0,

which proves that the 2-change in which GPn−1 changes its state from (L,L) to (S,L) is
improving for every p ∈ N with p ≥ 3.

Next we show that the improvements made by the 2-changes in the sequence in
which GPn−1 changes its state from (S,L) to (S, S) while resetting GRn−1 are positive.
For this we need to verify the following inequalities for every p ∈ N with p ≥ 3 (observe
that these are exactly the same inequalities that we have verified in Section 3.2.1 for
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the Manhattan metric):

1) dp(A
n−1
P,2 , C

n−1
P,2 ) + dp(C

n−1
R,2 , D

n−1
R,2 ) − dp(A

n−1
P,2 , C

n−1
R,2 ) − dp(C

n−1
P,2 , D

n−1
R,2 ) > 0

⇐⇒ p
√

9.7p + 3.6p + p
√

4.3p + 6.9p − p
√

0.3p + 1.7p − p
√

14.3p + 1.6p > 0,

2) dp(B
n−1
R,2 , A

n−1
R,2 ) + dp(D

n−1
P,2 , B

n−1
P,2 ) − dp(B

n−1
R,2 , D

n−1
P,2 )− dp(A

n−1
R,2 , B

n−1
P,2 ) > 0

⇐⇒ p
√

0.0p + 1.0p + p
√

8.7p + 14.3p − p
√

1.5p + 7.1p − p
√

7.2p + 6.2p > 0,

3) dp(B
n−1
R,2 , D

n−1
P,2 ) + dp(C

n−1
R,1 , D

n−1
R,1 ) − dp(B

n−1
R,2 , C

n−1
R,1 ) − dp(D

n−1
P,2 , D

n−1
R,1 ) > 0

⇐⇒ p
√

1.5p + 7.1p + p
√

4.3p + 6.9p − p
√

3.5p + 3.7p − p
√

9.3p + 3.9p > 0,

4) dp(B
n−1
R,1 , A

n−1
R,1 ) + dp(C

n−1
P,2 , D

n−1
R,2 ) − dp(B

n−1
R,1 , C

n−1
P,2 ) − dp(A

n−1
R,1 , D

n−1
R,2 ) > 0

⇐⇒ p
√

0.0p + 1.0p + p
√

14.3p + 1.6p − p
√

6.5p + 1.6p − p
√

7.8p + 4.2p > 0,

5) dp(A
n−1
P,2 , C

n−1
R,2 ) + dp(B

n−1
P,2 , A

n−1
R,2 ) − dp(A

n−1
P,2 , B

n−1
P,2 ) − dp(C

n−1
R,2 , A

n−1
R,2 ) > 0

⇐⇒ p
√

0.3p + 1.7p + p
√

7.2p + 6.2p − p
√

4.0p + 5.2p − p
√

3.5p + 2.7p > 0,

6) dp(C
n−1
R,1 , B

n−1
R,2 ) + dp(A

n−1
R,1 , D

n−1
R,2 ) − dp(C

n−1
R,1 , A

n−1
R,1 ) − dp(B

n−1
R,2 , D

n−1
R,2 ) > 0

⇐⇒ p
√

3.5p + 3.7p + p
√

7.8p + 4.2p − p
√

3.5p + 2.7p − p
√

7.8p + 3.2p > 0,

7) dp(C
n−1
P,2 , B

n−1
R,1 ) + dp(D

n−1
P,2 , D

n−1
R,1 )− dp(C

n−1
P,2 , D

n−1
P,2 ) − dp(B

n−1
R,1 , D

n−1
R,1 ) > 0

⇐⇒ p
√

6.5p + 1.6p + p
√

9.3p + 3.9p − p
√

5.0p + 5.5p − p
√

7.8p + 3.2p > 0.

These inequalities can be checked in the same way as Inequality (3.1). Details can be
found in Appendix A.

It remains to be shown that the sequences in which gadget GRn−2 resets gadget GPn−1

from (S, S) to (L,L), are improving. As the coordinates of the points in the two blocks
of gadget GRn−2 are the same, the inequalities for both sequences are also identical. We
need to verify the following inequalities:

1) dp(A
n−2
R,2 , C

n−2
R,2 ) + dp(C

n−1
P,2 , D

n−1
P,2 ) − dp(A

n−2
R,2 , C

n−1
P,2 ) − dp(C

n−2
R,2 , D

n−1
P,2 ) > 0

⇐⇒ p
√

27.3p + 21.06p + p
√

5.0p + 5.5p − p
√

13.7p + 0.9p − p
√

18.6p + 16.46p > 0,

2) dp(B
n−1
P,2 , A

n−1
P,2 ) + dp(D

n−2
R,2 , B

n−2
R,2 ) − dp(B

n−1
P,2 , D

n−2
R,2 ) − dp(A

n−1
P,2 , B

n−2
R,2 ) > 0

⇐⇒ p
√

4.0p + 5.2p + p
√

60.84p + 24.96p − p
√

60.84p + 23.06p − p
√

4.0p + 3.3p > 0,

3) dp(B
n−1
P,2 , D

n−2
R,2 ) + dp(C

n−1
P,1 , D

n−1
P,1 ) − dp(B

n−1
P,2 , C

n−1
P,1 ) − dp(D

n−2
R,2 , D

n−1
P,1 ) > 0

⇐⇒ p
√

60.84p + 23.06p + p
√

12.3p + 14.4p − p
√

15.8p + 11.8p − p
√

57.34p + 20.46p > 0,

4) dp(B
n−1
P,1 , A

n−1
P,1 ) + dp(C

n−2
R,2 , D

n−1
P,2 ) − dp(B

n−1
P,1 , C

n−2
R,2 ) − dp(A

n−1
P,1 , D

n−1
P,2 ) > 0

⇐⇒ p
√

2.2p + 4.9p + p
√

18.6p + 16.46p − p
√

15.4p + 16.26p − p
√

1.0p + 4.7p > 0,

5) dp(A
n−2
R,2 , C

n−1
P,2 ) + dp(B

n−2
R,2 , A

n−1
P,2 ) − dp(A

n−2
R,2 , B

n−2
R,2 ) − dp(C

n−1
P,2 , A

n−1
P,2 ) > 0

⇐⇒ p
√

13.7p + 0.9p + p
√

4.0p + 3.3p − p
√

0.0p + 7.8p − p
√

9.7p + 3.6p > 0,
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6) dp(C
n−1
P,1 , B

n−1
P,2 ) + dp(A

n−1
P,1 , D

n−1
P,2 ) − dp(C

n−1
P,1 , A

n−1
P,1 ) − dp(B

n−1
P,2 , D

n−1
P,2 ) > 0

⇐⇒ p
√

15.8p + 11.8p + p
√

1.0p + 4.7p − p
√

6.1p + 2.2p − p
√

8.7p + 14.3p > 0,

7) dp(C
n−2
R,2 , B

n−1
P,1 ) + dp(D

n−2
R,2 , D

n−1
P,1 ) − dp(C

n−2
R,2 , D

n−2
R,2 ) − dp(B

n−1
P,1 , D

n−1
P,1 ) > 0

⇐⇒ p
√

15.4p + 16.26p + p
√

57.34p + 20.46p − p
√

33.54p + 53.82p − p
√

8.4p + 17.1p > 0.

These inequalities can be checked in the same way as Inequality (3.1) was checked; see
the details in Appendix A.

4 Expected Number of 2-Changes

We analyze the expected number of 2-changes on random d-dimensional Manhattan and
Euclidean instances, for an arbitrary constant dimension d ≥ 2. One possible approach
for this is to analyze the improvement made by the smallest improving 2-change: If
the smallest improvement is not too small, then the number of improvements cannot
be large. This approach yields polynomial bounds, but in our analysis, we consider not
only a single step but certain pairs of steps. We show that the smallest improvement
made by any such pair is typically much larger than the improvement made by a single
step, which yields better bounds. Our approach is not restricted to pairs of steps. One
could also consider sequences of steps of length k for any small enough k. In fact,
for general φ-perturbed graphs with m edges, we consider sequences of length

√
logm

in [ERV07]. The reason why we can analyze longer sequences for general graphs is
that these inputs possess more randomness than φ-perturbed Manhattan and Euclidean
instances because every edge length is a random variable that is independent of the other
edge lengths. Hence, the analysis for general φ-perturbed graphs demonstrates the limits
of our approach under optimal conditions. For Manhattan and Euclidean instances, the
gain of considering longer sequences is small due to the dependencies between the edge
lengths.

4.1 Manhattan Instances

In this section, we analyze the expected number of 2-changes on φ-perturbed Man-
hattan instances. First we prove a weaker bound than the one in Theorem 1.2 in a
slightly different model. In this model the position of a vertex vi is not chosen accord-
ing to a density function fi : [0, 1]d → [0, φ], but instead each of its d coordinates is
chosen independently. To be more precise, for every j ∈ [d], there is a density func-
tion f ji : [0, 1]→ [0, φ] according to which the jth coordinate of vi is chosen.

The proof of this weaker bound illustrates our approach and reveals the problems
one has to tackle in order to improve the upper bounds. It is solely based on an
analysis of the smallest improvement made by any of the possible 2-Opt steps. If with
high probability every 2-Opt step decreases the tour length by an inverse polynomial
amount, then with high probability only polynomially many 2-Opt steps are possible
before a local optimum is reached. In fact, the probability that there exists a 2-Opt step
that decreases the tour length by less than an inverse polynomial amount is so small
that (as we will see) even the expected number of possible 2-Opt steps can be bounded
polynomially.
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Theorem 4.1. Starting with an arbitrary tour, the expected number of steps performed
by 2-Opt on φ-perturbed Manhattan instances with n vertices is O(n6 · log n · φ) if the
coordinates of every vertex are drawn independently.

Proof. We will see below that, in order to prove the desired bound on the expected
convergence time, we only need two simple observations. First, the initial tour can have
length at most dn as the number of edges is n and every edge has length at most d.
And second, every 2-Opt step decreases the length of the tour by an inverse polynomial
amount with high probability. The latter can be shown by a union bound over all
possible 2-Opt steps. Consider a fixed 2-Opt step S, let e1 and e2 denote the edges
removed from the tour in step S, and let e3 and e4 denote the edges added to the tour.
Then the improvement ∆(S) of step S can be written as

∆(S) = d(e1) + d(e2)− d(e3)− d(e4). (4.1)

Without loss of generality let e1 = (v1, v2) be the edge between the vertices v1 and v2,
and let e2 = (v3, v4), e3 = (v1, v3), and e4 = (v2, v4). Furthermore, for i ∈ {1, . . . 4}, let
xi ∈ Rd denote the coordinates of vertex vi. Then the improvement ∆(S) of step S can
be written as

∆(S) =

d∑
i=1

(
|x1
i − x2

i |+ |x3
i − x4

i | − |x1
i − x3

i | − |x2
i − x4

i |
)
.

Depending on the order of the coordinates, ∆(S) can be written as some linear combina-
tion of the coordinates. If, e.g., for all i ∈ [d], x1

i ≥ x2
i ≥ x3

i ≥ x4
i , then the improvement

∆(S) can be written as
∑d

i=1(−2x2
i + 2x3

i ). There are (4!)d such orders and each one

gives rise to a linear combination of the xji ’s with integer coefficients.
For each of these linear combinations, the probability that it takes a value in the

interval (0, ε] is bounded from above by εφ. To see this, we distinguish between two
cases: If all coefficients in the linear combination are zero then the probability that the
linear combination takes a value in the interval (0, ε] is zero. If at least one coefficient is
nonzero then we can apply the principle of deferred decisions (see, e.g., [MR95]). Let xji
be a variable that has a nonzero coefficient α and assume that all random variables
except for xji are already drawn. Then, in order for the linear combination to take a

value in the interval (0, ε], the random variable xji has to take a value in a fixed interval

of length ε/|α|. As the density of xji is bounded from above by φ and α is a nonzero
integer, the probability of this event is at most εφ.

Since ∆(S) can only take a value in the interval (0, ε] if one of the linear combinations
takes a value in this interval, the probability of the event ∆(S) ∈ (0, ε] can be upper
bounded by (4!)dεφ.

Let ∆min denote the improvement of the smallest improving 2-Opt step S, i.e.,
∆min = min{∆(S) | ∆(S) > 0}. We can estimate ∆min by a union bound, yielding

Pr [∆min ≤ ε] ≤ (4!)dεn4φ

as there are at most n4 different 2-Opt steps. Let T denote the random variable de-
scribing the number of 2-Opt steps before a local optimum is reached. Observe that T
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can only exceed a given number t if the smallest improvement ∆min is less than dn/t,
and hence

Pr [T ≥ t] ≤ Pr

[
∆min ≤

dn

t

]
≤ d(4!)dn5φ

t
.

Since there are at most n! different TSP tours and none of these tours can appear twice
during the local search, T is always bounded by n!. Altogether, we can bound the
expected value of T by

E [T ] =

n!∑
t=1

Pr [T ≥ t] ≤
n!∑
t=1

d(4!)dn5φ

t
.

Since we assumed the dimension d to be a constant, bounding the n-th harmonic number
by ln(n) + 1 and using ln(n!) = O(n log n) yields

E [T ] ≤ d(4!)dn5φ(ln(n!) + 1) = O(n6 · log n · φ).

The bound in Theorem 4.1 is only based on the smallest improvement ∆min made
by any of the 2-Opt steps. Intuitively, this is too pessimistic since most of the steps
performed by 2-Opt yield a larger improvement than ∆min. In particular, two consec-
utive steps yield an improvement of at least ∆min plus the improvement ∆′min of the
second smallest step. This observation alone, however, does not suffice to improve the
bound substantially. Instead, we show in Lemma 4.2 that we can regroup the 2-changes
to pairs such that each pair of 2-changes is linked by an edge, i.e., one edge added to
the tour in the first 2-change is removed from the tour in the second 2-change. Then we
analyze the smallest improvement made by any pair of linked 2-Opt steps. Obviously,
this improvement is at least ∆min+∆′min but one can hope that it is much larger because
it is unlikely that the 2-change that yields the smallest improvement and the 2-change
that yields the second smallest improvement form a pair of linked steps. We show that
this is indeed the case and use this result to prove the bound on the expected length
of the longest path in the state graph of 2-Opt on φ-perturbed Manhattan instances
claimed in Theorem 1.2.

4.1.1 Construction of pairs of linked 2-changes

Consider an arbitrary sequence of length t of consecutive 2-changes. The following
lemma guarantees that the number of disjoint linked pairs of 2-changes in every such
sequence increases linearly with the length t.

Lemma 4.2. In every sequence of t consecutive 2-changes, the number of disjoint pairs
of 2-changes that are linked by an edge, i.e., pairs such that there exists an edge added
to the tour in the first 2-change of the pair and removed from the tour in the second
2-change of the pair, is at least t/3− n(n− 1)/4.

Proof. Let S1, . . . , St denote an arbitrary sequence of consecutive 2-changes. The se-
quence is processed step by step and a list L of disjoint linked pairs of 2-changes is
created. Assume that the 2-changes S1, . . . , Si−1 have already been processed and that
now 2-change Si has to be processed. Assume further that in step Si the edges e1 and
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{
S1︷ ︸︸ ︷

(·, ·)→ (e1, e2),

S2︷ ︸︸ ︷
(·, ·)→ (e3, e4),

S3︷ ︸︸ ︷
(e1, e3)→ (·, ·),

S4︷ ︸︸ ︷
(e2, ·)→ (·, ·),

S5︷ ︸︸ ︷
(e4, ·)→ (·, ·)}

unprocessed 2-changes list of disjoint pairs
0) S1, S2, S3, S4, S5 L = ∅
1) S2, S5 L = {(S1, S3)}
2) L = {(S1, S3), (S2, S5)}

Figure 4.1: This figure shows an example of how the list L is generated. The considered
sequence consists of the five 2-changes S1, S2, S3, S4, S5, where · is used as placeholder
for mutually different edges that are different from all the ei. First all 2-changes are
unprocessed. Then S1 gets processed (i = 1). According to the definitions, we have
j = 3 and j′ = 4. Hence, we add the pair (S1, S3) to the list L and remove S1, S3, and
S4 from the sequence of 2-changes, leaving only the steps S2 and S5. Then we process
S2 for which j is undefined and j′ = 5.

e2 are exchanged with the edges e3 and e4 (for the following argument it is not impor-
tant which of the two incoming edges we call e3 and which we call e4). Let j denote
the smallest index with j > i such that edge e3 is removed from the tour in step Sj if
such a step exists, and let j′ denote the smallest index with j′ > i such that edge e4

is removed from the tour in step Sj′ if such a step exists. If the index j is defined, the
pair (Si, Sj) is added to the constructed list L. If the index j is not defined but the
index j′ is defined, the pair (Si, Sj′) is added to the constructed list L. After that, both
steps Sj and Sj′ (if defined) are removed from the sequence of 2-changes, that is, they
are not processed in the following in order to guarantee disjointness of the pairs in L.
Also step Si is removed from the sequence of 2-changes as it is completely processed.
See Figure 4.1 for an example of this process.

If one 2-change Si is processed, it excludes at most two other 2-changes from being
processed (Sj and Sj′). Hence, the number of pairs added to L is at least t/3−n(n−1)/4
because there can be at most b

(
n
2

)
/2c = bn(n − 1)/4c steps Si for which neither j nor

j′ is defined.

Consider a fixed pair of 2-changes linked by an edge. Without loss of generality
assume that in the first step the edges {v1, v2} and {v3, v4} are exchanged with the
edges {v1, v3} and {v2, v4}, for distinct vertices v1, . . . , v4. Also without loss of generality
assume that in the second step the edges {v1, v3} and {v5, v6} are exchanged with the
edges {v1, v5} and {v3, v6}. However, note that the vertices v5 and v6 are not necessarily
distinct from the vertices v2 and v4. We distinguish between three different types of
pairs.

• pairs of type 0: |{v2, v4} ∩ {v5, v6}| = 0. This case is illustrated in Figure 4.2.

• pairs of type 1: |{v2, v4} ∩ {v5, v6}| = 1. We can assume w.l.o.g. that v2 ∈ {v5, v6}.
We have to distinguish between two subcases: a) The edges {v1, v5} and {v2, v3}
are added to the tour in the second step. b) The edges {v1, v2} and {v3, v5} are
added to the tour in the second step. These cases are illustrated in Figure 4.3.
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v1
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Figure 4.2: A pair of type 0.

v1

v4
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v3

v1

v3
v5

v2 v1

v3
v5

v2a) b)

Figure 4.3: Pairs of type 1.

• pairs of type 2: |{v2, v4} ∩ {v5, v6}| = 2. The case v2 = v5 and v4 = v6 cannot
appear as it would imply that in the first step the edges {v1, v2} and {v3, v4}
are exchanged with the edges {v1, v3} and {v2, v4}, and that in the second step
the edges {v1, v3} and {v2, v4} are again exchanged with the edges {v1, v2} and
{v3, v4}. Hence, one of these 2-changes cannot be improving, and for pairs of this
type we must have v2 = v6 and v4 = v5.

When distances are measured according to the Euclidean metric, pairs of type 2
result in vast dependencies and hence the probability that there exists a pair of this
type in which both steps are improvements by at most ε with respect to the Euclidean
metric cannot be bounded appropriately. In order to reduce the number of cases we have
to consider and in order to prepare for the analysis of φ-perturbed Euclidean instances,
we exclude pairs of type 2 from our probabilistic analysis by leaving out all pairs of type
2 when constructing the list L in the proof of Lemma 4.2.

We only need to show that there are always enough pairs of type 0 or 1. Consider
two steps Si and Sj with i < j that form a pair of type 2. Assume that in step Si the
edges {v1, v2} and {v3, v4} are replaced by the edges {v1, v3} and {v2, v4}, and that in
step Sj these edges are replaced by the edges {v1, v4} and {v2, v3}. Now consider the
next step Sl with l > j in which the edge {v1, v4} is removed from the tour, if such a
step exists, and the next step Sl′ with l′ > j in which the edge {v2, v3} is removed from
the tour if such a step exists. Observe that neither (Sj , Sl) nor (Sj , Sl′) can be a pair of
type 2 because otherwise the improvement of one of the steps Si, Sj , and Sl, or of one
of the steps Si, Sj , and Sl′ , respectively, must be negative. In particular, we must have
l 6= l′.

If we encounter a pair (Si, Sj) of type 2 in the construction of the list L, we mark step
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Si as being processed without adding a pair of 2-changes to L and without removing Sj
from the sequence of steps to be processed. Let x denote the number of pairs of type 2
that we encounter during the construction of the list L. Our argument above shows
that the number of pairs of type 0 or 1 that are added to L is at least x− n(n− 1)/4.
This implies t ≥ x+ (x− n(n− 1)/4) and x ≤ t/2 + n(n− 1)/8. Hence, the number of
relevant steps reduces from t to t′ = t − x ≥ t/2 − n(n − 1)/8. Using this estimate in
Lemma 4.2 yields the following lemma.

Lemma 4.3. In every sequence of t consecutive 2-changes the number of disjoint pairs
of 2-changes of type 0 or 1 is at least t/6− 7n(n− 1)/24.

4.1.2 Analysis of pairs of linked 2-changes

The following lemma gives a bound on the probability that there exists a pair of type 0
or 1 in which both steps are small improvements.

Lemma 4.4. In a φ-perturbed Manhattan instance with n vertices, the probability that
there exists a pair of type 0 or type 1 in which both 2-changes are improvements by at
most ε is O(n6 · ε2 · φ2).

Proof. First, we consider pairs of type 0. We assume that in the first step the edges
{v1, v2} and {v3, v4} are replaced by the edges {v1, v3} and {v2, v4} and that in the sec-
ond step the edges {v1, v3} and {v5, v6} are replaced by the edges {v1, v5} and {v3, v6}.
For j ∈ [6], let xji ∈ Rd, i = 1, 2, . . . , d, denote the d coordinates of vertex vj . Further-
more, let ∆1 denote the (possibly negative) improvement of the first step and let ∆2

denote the (possibly negative) improvement of the second step. The random variables
∆1 and ∆2 can be written as

∆1 =
d∑
i=1

(|x1
i − x2

i |+ |x3
i − x4

i | − |x1
i − x3

i | − |x2
i − x4

i |)

and

∆2 =
d∑
i=1

(|x1
i − x3

i |+ |x5
i − x6

i | − |x1
i − x5

i | − |x3
i − x6

i |).

For any fixed order of the coordinates, ∆1 and ∆2 can be expressed as linear com-
binations of the coordinates with integer coefficients. For i ∈ [d], let σi denote an order
of the coordinates x1

i , . . . , x
6
i , let σ = (σ1, . . . , σd), and let ∆σ

1 and ∆σ
2 denote the cor-

responding linear combinations. We denote by A the event that both ∆1 and ∆2 take
values in the interval (0, ε], and we denote by Aσ the event that both linear combina-
tions ∆σ

1 and ∆σ
2 take values in the interval (0, ε]. Obviously A can only occur if for at

least one σ, the event Aσ occurs. Hence, we obtain

Pr [A] ≤
∑
σ

Pr [Aσ] .
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Since there are (6!)d different orders σ, which is constant for constant dimension d, it
suffices to show that for every tuple of orders σ, the probability of the event Aσ is
bounded from above by O(ε2φ2). Then a union bound over all possible pairs of linked
2-changes of type 0 (there are fewer than n6 of them) and all possible orders σ (there
is a constant number of them) yields the lemma for pairs of type 0.

We divide the set of possible pairs of linear combinations (∆σ
1 ,∆

σ
2 ) into three classes.

We say that a pair of linear combinations belongs to class A if at least one of the linear
combinations equals 0, we say that it belongs to class B if ∆σ

1 = −∆σ
2 , and we say that

it belongs to class C if ∆σ
1 and ∆σ

2 are linearly independent. For tuples of orders σ that
yield pairs from class A, the event Aσ cannot occur because the value of at least one
linear combination is 0. For tuples σ that yield pairs from class B, the event cannot
occur either because either ∆σ

1 or ∆σ
2 = −∆σ

1 is at most 0. For tuples σ that yield
pairs from class C, we can apply Lemma B.1 from Appendix B, which shows that the
probability of the event Aσ is bounded from above by (εφ)2. Hence, we only need to
show that every pair (∆σ

1 ,∆
σ
2 ) of linear combinations belongs either to class A, B, or C.

Consider a fixed tuple σ = (σ1, . . . , σd) of orders. We split ∆σ
1 and ∆σ

2 into d
parts that correspond to the d dimensions. To be precise, for j ∈ [2], we write ∆σ

j =∑
i∈[d]X

σi,i
j , where Xσi,i

j is a linear combination of the variables x1
i , . . . , x

6
i . As an

example let us consider the case d = 2, let the first order σ1 be x1
1 ≤ x2

1 ≤ x3
1 ≤ x4

1 ≤
x5

1 ≤ x6
1, and let the second order σ2 be x6

2 ≤ x5
2 ≤ x4

2 ≤ x3
2 ≤ x2

2 ≤ x1
2. Then we get

∆σ
1 =

2∑
i=1

(|x1
i − x2

i |+ |x3
i − x4

i | − |x1
i − x3

i | − |x2
i − x4

i |)

=

X
σ1,1
1︷ ︸︸ ︷

((x2
1 − x1

1) + (x4
1 − x3

1)− (x3
1 − x1

1)− (x4
1 − x2

1))

+

X
σ2,2
1︷ ︸︸ ︷

((x1
2 − x2

2) + (x3
2 − x4

2)− (x1
2 − x3

2)− (x2
2 − x4

2))

and

∆σ
2 =

2∑
i=1

(|x1
i − x3

i |+ |x5
i − x6

i | − |x1
i − x5

i | − |x3
i − x6

i |)

=

X
σ1,1
2︷ ︸︸ ︷

((x3
1 − x1

1) + (x6
1 − x5

1)− (x5
1 − x1

1)− (x6
1 − x3

1))

+

X
σ2,2
2︷ ︸︸ ︷

((x1
2 − x3

2) + (x5
2 − x6

2)− (x1
2 − x5

2)− (x3
2 − x6

2)) .

If, for one i ∈ [d], the pair (Xσi,i
1 , Xσi,i

2 ) of linear combinations belongs to class C,
then also the pair (∆σ

1 ,∆
σ
2 ) belongs to class C because the sets of variables occurring in

Xσi,i
j and X

σi′ ,i
′

j are disjoint for i 6= i′. If for all i ∈ [d] the pair of linear combinations

(Xσi,i
1 , Xσi,i

2 ) belongs to class A or B, then also the pair (∆σ
1 ,∆

σ
2 ) belongs either to class
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A or B. Hence, the following lemma directly implies that (∆σ
1 ,∆

σ
2 ) belongs to one of

the classes A, B, or C.

Lemma 4.5. For pairs of type 0 and for i ∈ [d], the pair of linear combinations
(Xσi,i

1 , Xσi,i
2 ) belongs either to class A, B, or C.

Proof. Assume that the pair (Xσi,i
1 , Xσi,i

2 ) of linear combinations is linearly dependent
for a fixed order σi. Observe that this can only happen if the sets of variables occurring
in Xσi,i

1 and Xσi,i
2 are the same. Hence, it can only happen if the following two conditions

occur.

• Xσi,i
1 does not contain x2

i or x4
i . If x3

i ≥ x4
i , it must be true that x2

i ≥ x4
i in order

for x4
i to cancel out. Then, in order for x2

i to cancel out, it must be true that
x2
i ≥ x1

i . If x3
i ≤ x4

i , it must be true that x2
i ≤ x4

i in order for x4
i to cancel out.

Then, in order for x2
i to cancel out, it must be true that x2

i ≤ x1
i .

Hence, either x3
i ≥ x4

i , x
2
i ≥ x4

i , and x2
i ≥ x1

i , or x3
i ≤ x4

i , x
2
i ≤ x4

i , and x2
i ≤ x1

i .

• Xσi,i
2 does not contain x5

i or x6
i . If x5

i ≥ x6
i , it must be true that x3

i ≥ x6
i in order

for x6
i to cancel out, and it must be true that x5

i ≥ x1
i in order for x5

i to cancel
out. If x5

i ≤ x6
i , it must be true that x3

i ≤ x6
i in order for x6

i to cancel out, and it
must be true that x5

i ≤ x1
i in order for x5

i to cancel out.

Hence, either x5
i ≥ x6

i , x
3
i ≥ x6

i , and x5
i ≥ x1

i , or x5
i ≤ x6

i , x
3
i ≤ x6

i , and x5
i ≤ x1

i .

Now we choose an order such that x2
i , x

4
i , x

5
i , and x6

i cancel out. We distinguish
between the cases x1

i ≥ x3
i and x3

i ≥ x1
i .

x1
i ≥ x3

i : In this case, we can write Xσi,i
1 as

Xσi,i
1 = |x1

i − x2
i |+ |x3

i − x4
i | − |x1

i − x3
i | − |x2

i − x4
i |

= |x1
i − x2

i |+ |x3
i − x4

i | − (x1
i − x3

i )− |x2
i − x4

i |.

Since we have argued above that either x3
i ≥ x4

i , x
2
i ≥ x4

i , and x2
i ≥ x1

i , or x3
i ≤ x4

i ,
x2
i ≤ x4

i , and x2
i ≤ x1

i , we obtain that either

Xσi,i
1 = (x2

i − x1
i ) + (x3

i − x4
i )− (x1

i − x3
i )− (x2

i − x4
i ) = −2x1

i + 2x3
i

or
Xσi,i

1 = (x1
i − x2

i ) + (x4
i − x3

i )− (x1
i − x3

i )− (x4
i − x2

i ) = 0.

We can write Xσi,i
2 as

Xσi,i
2 = |x1

i − x3
i |+ |x5

i − x6
i | − |x1

i − x5
i | − |x3

i − x6
i |

= (x1
i − x3

i ) + |x5
i − x6

i | − |x1
i − x5

i | − |x3
i − x6

i |.

Since we have argued above that either x5
i ≥ x6

i , x
3
i ≥ x6

i , and x5
i ≥ x1

i , or x5
i ≤ x6

i ,
x3
i ≤ x6

i , and x5
i ≤ x1

i , we obtain that either

Xσi,i
2 = (x1

i − x3
i ) + (x5

i − x6
i )− (x5

i − x1
i )− (x3

i − x6
i ) = 2x1

i − 2x3
i

26



or
Xσi,i

2 = (x1
i − x3

i ) + (x6
i − x5

i )− (x1
i − x5

i )− (x6
i − x3

i ) = 0.

In summary, the case analysis shows that Xσi,i
1 ∈ {0,−2x1

i + 2x3
i } and Xσi,i

2 ∈
{0, 2x1

i −2x3
i }. Hence, in this case the resulting pair of linear combinations belongs

either to class A or B.

x3
i ≥ x1

i : In this case, we can write Xσi,i
1 as

Xσi,i
1 = |x1

i − x2
i |+ |x3

i − x4
i | − |x1

i − x3
i | − |x2

i − x4
i |

= |x1
i − x2

i |+ |x3
i − x4

i | − (x3
i − x1

i )− |x2
i − x4

i |.

Since we have argued above that either x3
i ≥ x4

i , x
2
i ≥ x4

i , and x2
i ≥ x1

i , or x3
i ≤ x4

i ,
x2
i ≤ x4

i , and x2
i ≤ x1

i , we obtain that either

Xσi,i
1 = (x2

i − x1
i ) + (x3

i − x4
i )− (x3

i − x1
i )− (x2

i − x4
i ) = 0

or
Xσi,i

1 = (x1
i − x2

i ) + (x4
i − x3

i )− (x3
i − x1

i )− (x4
i − x2

i ) = 2x1
i − 2x3

i .

We can write Xσi,i
2 as

Xσi,i
2 = |x1

i − x3
i |+ |x5

i − x6
i | − |x1

i − x5
i | − |x3

i − x6
i |

= (x3
i − x1

i ) + |x5
i − x6

i | − |x1
i − x5

i | − |x3
i − x6

i |.

Since we have argued above that either x5
i ≥ x6

i , x
3
i ≥ x6

i , and x5
i ≥ x1

i , or x5
i ≤ x6

i ,
x3
i ≤ x6

i , and x5
i ≤ x1

i , we obtain that either

Xσi,i
2 = (x3

i − x1
i ) + (x5

i − x6
i )− (x5

i − x1
i )− (x3

i − x6
i ) = 0

or

Xσi,i
2 = (x3

i − x1
i ) + (x6

i − x5
i )− (x1

i − x5
i )− (x6

i − x3
i ) = −2x1

i + 2x3
i .

In summary, the case analysis shows that Xσi,i
1 ∈ {0, 2x1

i − 2x3
i } and Xσi,i

2 ∈
{0,−2x1

i + 2x3
i }. Hence, also in this case the resulting pair of linear combinations

belongs either to class A or B.

Now we consider pairs of type 1 a). Using the same notation as for pairs of type 0,
we can write the improvement ∆2 as

∆2 =
∑
i∈[d]

(|x1
i − x3

i |+ |x2
i − x5

i | − |x1
i − x5

i | − |x2
i − x3

i |).

Again we write, for j ∈ [2], ∆σ
j =

∑
i∈[d]X

σi,i
j , where Xσi,i

j is a linear combination of

the variables x1
i , . . . , x

6
i . Compared to pairs of type 0, only the terms Xσi,i

2 are different,

whereas the terms Xσi,i
1 do not change.
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Lemma 4.6. For pairs of type 1 a) and for i ∈ [d], the pair (Xσi,i
1 , Xσi,i

2 ) of linear
combinations belongs either to class A, B, or C.

Proof. Assume that the pair (Xσi,i
1 , Xσi,i

2 ) is linearly dependent for a fixed order σi.

Observe that this can only happen if the sets of variables occurring in Xσi,i
1 and Xσi,i

2

are the same. Hence, it can only happen if the following two conditions occur.

• Xσi,i
1 does not contain x4

i . If x3
i ≥ x4

i , it must be true that x2
i ≥ x4

i in order for x4
i

to cancel out. If x3
i ≤ x4

i , it must be true that x2
i ≤ x4

i in order for x4
i to cancel

out.

Hence, either x3
i ≥ x4

i and x2
i ≥ x4

i , or x3
i ≤ x4

i and x2
i ≤ x4

i .

• Xσi,i
2 does not contain x5

i . If x2
i ≥ x5

i , it must be true that x1
i ≥ x5

i in order for x5
i

to cancel out. If x2
i ≤ x5

i , it must be true that x1
i ≤ x5

i in order for x5
i to cancel

out.

Hence, either x2
i ≥ x5

i and x1
i ≥ x5

i , or x2
i ≤ x5

i and x1
i ≤ x5

i .

Now we choose an order such that x4
i and x5

i cancel out. We distinguish between
the following cases.

x1
i ≥ x3

i : In this case, we can write Xσi,i
1 as

Xσi,i
1 = |x1

i − x2
i |+ |x3

i − x4
i | − |x1

i − x3
i | − |x2

i − x4
i |

= |x1
i − x2

i |+ |x3
i − x4

i | − (x1
i − x3

i )− |x2
i − x4

i |.

Since we have argued above that either x3
i ≥ x4

i and x2
i ≥ x4

i , or x3
i ≤ x4

i and
x2
i ≤ x4

i , we obtain that either

Xσi,i
1 = |x1

i − x2
i |+ (x3

i − x4
i )− (x1

i − x3
i )− (x2

i − x4
i )

= |x1
i − x2

i |+ 2x3
i − x1

i − x2
i ∈ {2x3

i − 2x2
i , 2x

3
i − 2x1

i }.

or

Xσi,i
1 = |x1

i − x2
i |+ (x4

i − x3
i )− (x1

i − x3
i )− (x4

i − x2
i )

= |x1
i − x2

i | − x1
i + x2

i ∈ {0,−2x1
i + 2x2

i }.

We can write Xσi,i
2 as

Xσi,i
2 = |x1

i − x3
i |+ |x2

i − x5
i | − |x1

i − x5
i | − |x2

i − x3
i |

= (x1
i − x3

i ) + |x2
i − x5

i | − |x1
i − x5

i | − |x2
i − x3

i |.

Since we have argued above that either x2
i ≥ x5

i and x1
i ≥ x5

i , or if x2
i ≤ x5

i and
x1
i ≤ x5

i , we obtain that either

Xσi,i
2 = (x1

i − x3
i ) + (x2

i − x5
i )− (x1

i − x5
i )− |x2

i − x3
i |

= x2
i − x3

i − |x2
i − x3

i | ∈ {0, 2x2
i − 2x3

i }
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or

Xσi,i
2 = (x1

i − x3
i ) + (x5

i − x2
i )− (x5

i − x1
i )− |x2

i − x3
i |

= 2x1
i − x2

i − x3
i − |x2

i − x3
i | ∈ {2x1

i − 2x2
i , 2x

1
i − 2x3

i }.

In summary, the case analysis shows thatXσi,i
1 ∈ {0,−2x1

i+2x2
i ,−2x1

i+2x3
i ,−2x2

i+

2x3
i } and Xσi,i

2 ∈ {0, 2x1
i − 2x2

i , 2x
1
i − 2x3

i , 2x
2
i − 2x3

i }. Hence, in this case the re-
sulting pair of linear combinations belongs either to class A, B, or C.

x1
i ≤ x3

i : In this case, we can write Xσi,i
1 as

Xσi,i
1 = |x1

i − x2
i |+ |x3

i − x4
i | − |x1

i − x3
i | − |x2

i − x4
i |

= |x1
i − x2

i |+ |x3
i − x4

i | − (x3
i − x1

i )− |x2
i − x4

i |.

Since we have argued above that either x3
i ≥ x4

i and x2
i ≥ x4

i , or x3
i ≤ x4

i and
x2
i ≤ x4

i , we obtain that either

Xσi,i
1 = |x1

i − x2
i |+ (x3

i − x4
i )− (x3

i − x1
i )− (x2

i − x4
i )

= |x1
i − x2

i |+ x1
i − x2

i ∈ {0, 2x1
i − 2x2

i }.

or

Xσi,i
1 = |x1

i − x2
i |+ (x4

i − x3
i )− (x3

i − x1
i )− (x4

i − x2
i )

= |x1
i − x2

i |+ x1
i + x2

i − 2x3
i ∈ {2x1

i − 2x3
i , 2x

2
i − 2x3

i }.

We can write Xσi,i
2 as

Xσi,i
2 = |x1

i − x3
i |+ |x2

i − x5
i | − |x1

i − x5
i | − |x2

i − x3
i |

= (x3
i − x1

i ) + |x2
i − x5

i | − |x1
i − x5

i | − |x2
i − x3

i |.

Since we have argued above that either x2
i ≥ x5

i and x1
i ≥ x5

i , or x2
i ≤ x5

i and
x1
i ≤ x5

i , we obtain that either

Xσi,i
2 = (x3

i − x1
i ) + (x2

i − x5
i )− (x1

i − x5
i )− |x2

i − x3
i |

= −2x1
i + x2

i + x3
i − |x2

i − x3
i | ∈ {−2x1

i + 2x3
i ,−2x1

i + 2x2
i }

or

Xσi,i
2 = (x3

i − x1
i ) + (x5

i − x2
i )− (x5

i − x1
i )− |x2

i − x3
i |

= −x2
i + x3

i − |x2
i − x3

i | ∈ {0,−2x2
i + 2x3

i }.

In summary, the case analysis shows thatXσi,i
1 ∈ {0, 2x1

i−2x2
i , 2x

1
i−2x3

i , 2x
2
i−2x3

i }
and Xσi,i

2 ∈ {0,−2x1
i + 2x2

i ,−2x1
i + 2x3

i ,−2x2
i + 2x3

i }. Hence, in this case the
resulting pair of linear combinations belongs either to class A, B, or C.
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Finally we consider pairs of type 1 b). Using the same notation as before, we can
write the improvement ∆2 as

∆2 =

d∑
i=1

(
|x1
i − x3

i |+ |x2
i − x5

i | − |x1
i − x2

i | − |x3
i − x5

i |
)
.

Again we write, for j ∈ [2], ∆σ
j =

∑
i∈[d]X

σi,i
j , where Xσi,i

j is a linear combination of

the variables x1
i , . . . , x

6
i . And again only the terms Xσi,i

2 are different from before.

Lemma 4.7. For pairs of type 1 b) and for i ∈ [d], the pair of linear combinations
(Xσi,i

1 , Xσi,i
2 ) belongs either to class A, B, or C.

Proof. Using the same notation as for pairs of type 0, we can write the improvement
∆2 as

∆2 =
d∑
i=1

(
|x1
i − x3

i |+ |x2
i − x5

i | − |x1
i − x2

i | − |x3
i − x5

i |
)
.

Assume that the pair (Xσi,i
1 , Xσi,i

2 ) is linearly dependent for a fixed order σi. Observe

that this can only happen if the sets of variables occurring in Xσi,i
1 and Xσi,i

2 are the
same. Hence, it can only happen if the following two conditions occur.

• Xσi,i
1 does not contain x4

i . We have considered this condition already for pairs of
type 1 a) and showed that either x3

i ≥ x4
i and x2

i ≥ x4
i , or x3

i ≤ x4
i and x2

i ≤ x4
i .

• Xσi,i
2 does not contain x5

i . If x2
i ≥ x5

i , it must be true that x3
i ≥ x5

i in order for x5
i

to cancel out. If x2
i ≤ x5

i , it must be true that x3
i ≤ x5

i in order for x5
i to cancel

out.

Hence, either x2
i ≥ x5

i and x3
i ≥ x5

i , or x2
i ≤ x5

i and x3
i ≤ x5

i .

Now we choose an order such that x4
i and x5

i cancel out. We distinguish between
the following cases.

x1
i ≥ x3

i : We have argued already for pairs of type 1 a) that in this case Xσi,i
1 ∈ {0,−2x1

i +
2x2

i ,−2x1
i + 2x3

i ,−2x2
i + 2x3

i }.
We can write Xσi,i

2 as

Xσi,i
2 = |x1

i − x3
i |+ |x2

i − x5
i | − |x1

i − x2
i | − |x3

i − x5
i |

= (x1
i − x3

i ) + |x2
i − x5

i | − |x1
i − x2

i | − |x3
i − x5

i |.

Since we have argued above that either x2
i ≥ x5

i and x3
i ≥ x5

i , or x2
i ≤ x5

i and
x3
i ≤ x5

i , we obtain that either

Xσi,i
2 = (x1

i − x3
i ) + (x2

i − x5
i )− |x1

i − x2
i | − (x3

i − x5
i )

= x1
i + x2

i − 2x3
i − |x1

i − x2
i | ∈ {2x2

i − 2x3
i , 2x

1
i − 2x3

i }
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or

Xσi,i
2 = (x1

i − x3
i ) + (x5

i − x2
i )− |x1

i − x2
i | − (x5

i − x3
i )

= x1
i − x2

i − |x1
i − x2

i | ∈ {0, 2x1
i − 2x2

i }.

In summary, the case analysis shows thatXσi,i
1 ∈ {0,−2x1

i+2x2
i ,−2x1

i+2x3
i ,−2x2

i+

2x3
i } and Xσi,i

2 ∈ {0, 2x1
i − 2x2

i , 2x
1
i − 2x3

i , 2x
2
i − 2x3

i }. Hence, in this case the re-
sulting pair of linear combinations belongs either to class A, B, or C.

x1
i ≤ x3

i : We have argued already for pairs of type 1 a) that in this case Xσi,i
1 ∈ {0, 2x1

i −
2x2

i , 2x
1
i − 2x3

i , 2x
2
i − 2x3

i }.
We can write Xσi,i

2 as

Xσi,i
2 = |x1

i − x3
i |+ |x2

i − x5
i | − |x1

i − x2
i | − |x3

i − x5
i |

= (x3
i − x1

i ) + |x2
i − x5

i | − |x1
i − x2

i | − |x3
i − x5

i |.

Since we have argued above that either x2
i ≥ x5

i and x3
i ≥ x5

i , or x2
i ≤ x5

i and
x3
i ≤ x5

i , we obtain that either

Xσi,i
2 = (x3

i − x1
i ) + (x2

i − x5
i )− |x1

i − x2
i | − (x3

i − x5
i )

= −x1
i + x2

i − |x1
i − x2

i | ∈ {0,−2x1
i + 2x2

i }

or

Xσi,i
2 = (x3

i − x1
i ) + (x5

i − x2
i )− |x1

i − x2
i | − (x5

i − x3
i )

= −x1
i − x2

i + 2x3
i − |x1

i − x2
i | ∈ {−2x1

i + 2x3
i ,−2x2

i + 2x3
i }.

In summary, the case analysis shows thatXσi,i
1 ∈ {0, 2x1

i−2x2
i , 2x

1
i−2x3

i , 2x
2
i−2x3

i }
and Xσi,i

2 ∈ {0,−2x1
i + 2x2

i ,−2x1
i + 2x3

i ,−2x2
i + 2x3

i }. Hence, in this case the
resulting pair of linear combinations belongs either to class A, B, or C.

We have argued above that for tuples σ of orders that yield pairs from class A or
B, the event Aσ cannot occur. For tuples σ that yield pairs from class C, we can apply
Lemma B.1 from Appendix B, which shows that the probability of the event Aσ is
bounded from above by (εφ)2. As we have shown that every tuple yields a pair from
class A, B, or C, we can conclude the proof of Lemma 4.4 by a union bound over all
pairs of linked 2-changes of type 0 and 1 and all tuples σ. As these are O(n6), the
lemma follows.

4.1.3 Expected number of 2-changes

Based on Lemmas 4.3 and 4.4, we are now able to prove part a) of Theorem 1.2.

Proof of Theorem 1.2 a). Let T denote the random variable that describes the length of
the longest path in the state graph. If T ≥ t, then there must exist a sequence S1, . . . , St
of t consecutive 2-changes in the state graph. We start by identifying a set of linked
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pairs of type 0 and 1 in this sequence. Due to Lemma 4.3, we know that we can find
at least z = t/6− 7n(n− 1)/24 such pairs. Let ∆∗min denote the smallest improvement
made by any pair of improving 2-Opt steps of type 0 or 1. If T ≥ t, then ∆∗min ≤ dn

z as
the initial tour has length at most dn and every linked pair of type 0 or 1 decreases the
length of the tour by at least ∆∗min. For t > 2n2, we have z = t/6−7n(n−1)/24 > t/48
and hence due to Lemma 4.4,

Pr [T ≥ t] ≤ Pr

[
∆∗min ≤

dn

z

]
≤ Pr

[
∆∗min ≤

48dn

t

]
= O

(
n8φ2

t2

)
.

Using the fact that probabilities are bounded from above by one, we obtain

Pr [T ≥ t] = O

(
min

{
n8φ2

t2
, 1

})
.

Since T cannot exceed n!, this implies the following bound on the expected number
of 2-changes:

E [T ] ≤ 2n2 +
n!∑

t=2n2+1

O

(
min

{
n8φ2

t2
, 1

})

= 2n2 +O

 n4φ∑
t=2n2+1

1

+O

 n!∑
t=n4φ+1

n8φ2

t2

 = O(n4 · φ).

This concludes the proof of part a) of the theorem.

Chandra, Karloff, and Tovey [CKT99] show that for every metric that is induced by
a norm on Rd, and for any set of n points in the unit hypercube [0, 1]d, the optimal tour
visiting all n points has length O(n(d−1)/d). Furthermore, every insertion heuristic finds
an O(log n)-approximation [RSI77]. Hence, if one starts with a solution computed by an
insertion heuristic, the initial tour has length O(n(d−1)/d · log n). Using this observation
yields part a) of Theorem 1.3:

Proof of Theorem 1.3 a). Since the initial tour has length O(n(d−1)/d · log n), we obtain
for an appropriate constant c and t > 2n2,

Pr [T ≥ t] ≤ Pr

[
∆∗min ≤

c · n(d−1)/d · log n

t

]
= O

(
min

{
n8−2/d · log2 n · φ2

t2
, 1

})
,

where the equality follows from Lemma 4.4. This yields

E [T ] ≤ 2n2 +

n!∑
t=2n2+1

O

(
min

{
n8−2/d · log2 n · φ2

t2
, 1

})
= O(n4−1/d · log n · φ).
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4.2 Euclidean Instances

In this section, we analyze the expected number of 2-changes on φ-perturbed Euclidean
instances. The analysis is similar to the analysis of Manhattan instances in the previous
section; only Lemma 4.4 needs to be replaced by the following equivalent version for
the L2 metric, which will be proved later in this section.

Lemma 4.8. For φ-perturbed L2 instances, the probability that there exists a pair of
type 0 or type 1 in which both 2-changes are improvements by at most ε ≤ 1/2 is bounded
by O(n6 · φ5 · ε2 · log2(1/ε)) +O(n5 · φ4 · ε3/2 · log(1/ε)).

The bound that this lemma provides is slightly weaker than its L1 counterpart, and
hence also the bound on the expected running time is slightly worse for L2 instances.
The crucial step to proving Lemma 4.8 is to gain a better understanding of the random
variable that describes the improvement of a single fixed 2-change. In the next section,
we analyze this random variable under several conditions, e.g., under the condition that
the length of one of the involved edges is fixed. With the help of these results, pairs of
linked 2-changes can easily be analyzed. Let us mention that our analysis of a single
2-change yields a bound of O(n7 · log2(n) ·φ3) for the expected number of 2-changes. For
Euclidean instances in which all points are distributed uniformly at random over the unit
square, this bound already improves the best previously known bound of O(n10 · log n).

4.2.1 Analysis of a single 2-change

We analyze a 2-change in which the edges {O,Q1} and {P,Q2} are exchanged with
the edges {O,Q2} and {P,Q1} for some vertices O, P , Q1, and Q2. In the input
model we consider, each of these points has a probability distribution over the unit
hypercube according to which it is chosen. In this section, we consider a simplified
random experiment in which O is chosen to be the origin and P , Q1, and Q2 are chosen
independently and uniformly at random from a d-dimensional hyperball with radius

√
d

centered at the origin. In the next section, we argue that the analysis of this simplified
random experiment helps to analyze the actual random experiment that occurs in the
probabilistic input model.

Due to the rotational symmetry of the simplified model, we assume without loss of
generality that P lies at position (0d−1, T ) for some T ≥ 0. For i ∈ [2], Let Zi denote the
difference d(O,Qi)−d(P,Qi). Then the improvement ∆ of the 2-change can be expressed
as Z1 − Z2. The random variables Z1 and Z2 are identically distributed, and they are
independent if T is fixed. We denote by fZ1|T=τ,R=r the density of Z1 conditioning on
the fact that d(O,Q1) = r and T = τ . Similarly, we denote by fZ2|T=τ,R=r the density of
Z2 conditioning on the fact that d(O,Q2) = r and T = τ . As Z1 and Z2 are identically
distributed, the conditional densities fZ1|T=τ,R=r and fZ2|T=τ,R=r are identical as well.
Hence, we can drop the index in the following and write fZ|T=τ,R=r.

Lemma 4.9. For τ, r ∈ (0,
√
d], and z ∈ (−τ,min{τ, 2r − τ}),

fZ|T=τ,R=r(z) ≤


√

2
τ2−z2 if r ≥ τ,√

2
(τ+z)(2r−τ−z) if r < τ.
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O

P = (0, τ)

Qrα
τ

Figure 4.4: The random variable Z is defined as r − d(P,Q).

For z /∈ [−τ,min{τ, 2r − τ}], the density fZ|T=τ,R=r(z) is 0.

Proof. We denote by Z the random variable d(O,Q) − d(P,Q), where Q is a point
chosen uniformly at random from a d-dimensional hyperball with radius

√
d centered at

the origin. In the following, we assume that the plane spanned by the points O, P , and
Q is fixed arbitrarily, and we consider the random experiment conditioned on the event
that Q lies in this plane. To make the calculations simpler, we use polar coordinates
to describe the location of Q. Since the radius d(O,Q) = r is given, the point Q is
completely determined by the angle α between the y-axis and the line between O and
Q (see Figure 4.4). Hence, the random variable Z can be written as

Z = r −
√
r2 + τ2 − 2rτ · cosα.

It is easy to see that Z can only take values in the interval [−τ,min{τ, 2r − τ}], and
hence the density fZ|T=τ,R=r(z) is 0 outside this interval.

Since Q is chosen uniformly at random from a hyperball centered at the origin,
rotational symmetry implies that the angle α is chosen uniformly at random from the
interval [0, 2π). For symmetry reasons, we can assume that α is chosen uniformly from
the interval [0, π). When α is restricted to the interval [0, π), there exists a unique
inverse function mapping Z to α, namely

α(z) = arccos

(
τ2 + 2zr − z2

2rτ

)
.

For |x| < 1, the derivative of the arc cosine is

(arccos(x))′ = − 1√
1− x2

≤ 0.

Hence, the density fZ|T=τ,R=r can be expressed as

fZ|T=τ,R=r(z) = fα(α(z)) ·
∣∣∣∣ ddzα(z)

∣∣∣∣ = − 1

π
· d
dz
α(z) ≤ − d

dz
α(z),

where fα denotes the density of α, i.e., the density of the uniform distribution over
[0, π). Using the chain rule, we obtain that the derivative of α(z) equals

r − z
rτ
· −1√

1− (τ2+2zr−z2)2

4r2τ2

=
2(z − r)√

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4
.
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In order to prove the lemma, we distinguish between the cases r ≥ τ and r < τ .
First case: r ≥ τ .

In this case, it suffices to show that

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 ≥ 2(z − r)2(τ2 − z2), (4.2)

which is implied by

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 − 2(z − r)2(τ2 − z2)

= 2r2(τ2 − z2)− τ4 + z4 ≥ 2τ2(τ2 − z2)− τ4 + z4 = (τ2 − z2)2 ≥ 0.

This proves the lemma for r ≥ τ because

− d

dz
α(z) = − 2(z − r)√

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4

≤ − 2(z − r)√
2(z − r)2(τ2 − z2)

= − 2(z − r)
|z − r|

√
2(τ2 − z2)

=

√
2

τ2 − z2
,

where we have used (4.2) for the inequality.
Second case: r < τ .

In this case, it suffices to show that

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 ≥ 2(z − r)2(τ + z)(2r − τ − z),

which is implied by

4r2τ2 − 4r2z2 − 4rτ2z + 4rz3 − τ4 + 2τ2z2 − z4 − 2(z − r)2(τ + z)(2r − τ − z) ≥ 0

⇐⇒ (−2r + z + τ)(τ + z)(z2 + 2τz − 2rz + 2r2 − τ2 − 2τr) ≥ 0

⇐⇒ z2 + 2τz − 2rz + 2r2 − τ2 − 2τr ≤ 0, (4.3)

where the first equivalence follows because the left hand sides of the first and second
inequality are identical and where the last equivalence follows because (−2r+z+τ) < 0
and (τ + z) > 0. Both these inequalities are true because z ∈ (−τ,min{τ, 2r − τ}).
Inequality (4.3) follows from

z2 + 2τz − 2rz + 2r2 − τ2 − 2τr

=z2 + 2z(τ − r) + 2r2 − τ2 − 2τr

≤(2r − τ)2 + 2(2r − τ)(τ − r) + 2r2 − τ2 − 2τr

=2(r2 − τ2) ≤ 0,

where the first inequality follows because z ≤ 2r − τ .

Based on Lemma 4.9, the density of the random variable ∆ = Z1 − Z2 under the
conditions R1 := d(O,Q1) = r1, R2 := d(O,Q2) = r2, and T := d(O,P ) = τ can be
computed as the convolution of the densities of the random variables Z1 and −Z2. The
former density equals fZ|T=τ,R=r and the latter density can easily be obtained from
fZ|T=τ,R=r.
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Lemma 4.10. Let τ, r1, r2 ∈ (0,
√
d], and let Z1 and Z2 be independent random vari-

ables drawn according to the densities fZ|T=τ,R=r1 and fZ|T=τ,R=r2, respectively. For
δ ∈ (0, 1/2] and a sufficiently large constant κ, the density f∆|T=τ,R1=r1,R2=r2(δ) of the
random variable ∆ = Z1 − Z2 is bounded from above by

κ
τ · ln

(
δ−1
)

if τ ≤ r1, τ ≤ r2,
κ√
r1r2
·
(
ln
(
δ−1
)

+ ln |2(r1 − r2)− δ|−1
)

if r1 ≤ τ, r2 ≤ τ, δ 6= 2(r1 − r2),
κ√
τr1
· ln
(
δ−1
)

if r1 ≤ τ ≤ r2,
κ√
τr2
·
(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)

if r2 ≤ τ ≤ r1, δ 6= 2(τ − r2).

The simple but somewhat tedious calculation that yields Lemma 4.10 is deferred to
Appendix C.1. In order to prove Lemma 4.8, we need bounds on the densities of the
random variables ∆, Z1, and Z2 under certain conditions. We summarize these bounds
in the following lemma.

Lemma 4.11. Let τ, r ∈ (0,
√
d], δ ∈ (0, 1/2], and let κ denote a sufficiently large

constant.

a) For i ∈ [2], the density of ∆ under the condition Ri = r is bounded by

f∆|Ri=r(δ) ≤
κ√
r
· ln
(
δ−1
)
.

b) The density of ∆ under the condition T = τ is bounded by

f∆|T=τ (δ) ≤ κ

τ
· ln
(
δ−1
)
.

c) The density of ∆ is bounded by

f∆(δ) ≤ κ · ln
(
δ−1
)
.

d) For i ∈ [2], the density of Zi under the condition T = τ is bounded by

fZi|T=τ (z) ≤ κ√
τ2 − z2

if |z| < τ . Since Zi takes only values in the interval [−τ, τ ], the conditional density
fZi|T=τ (z) is 0 for z /∈ [−τ, τ ].

Lemma 4.11 follows from Lemmas 4.9 and 4.10 by integrating over all values of the
unconditioned distances. The proof can be found in Appendix C.2.

4.2.2 Simplified random experiments

In the previous section we did not analyze the random experiment that really takes place.
Instead of choosing the points according to the given density functions, we simplified
their distributions by placing point O in the origin and by giving the other points P , Q1,
and Q2 uniform distributions centered around the origin. In our input model, however,
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each of these points is described by a density function over the unit hypercube. We
consider the probability of the event ∆ ∈ [0, ε] in the original input model as well as
in the simplified random experiment. In the following, we denote this event by E . We
claim that the simplified random experiment that we analyze is only slightly dominated
by the original random experiment, in the sense that the probability of the event E in
the simplified random experiment is smaller by at most some factor depending on φ.

In order to compare the probabilities in the original and in the simplified random
experiment, consider the original experiment and assume that the pointO lies at position
x ∈ [0, 1]d. Then one can identify a region Rx ⊆ R3d with the property that the event
E occurs if and only if the random vector (P,Q1, Q2) lies in Rx. No matter how the
position x of O is chosen, this region always has the same shape, only its position is
shifted. That is, Rx = {(x, x, x)+R0d}. Let V = supx∈[0,1]d Vol(Rx∩ [0, 1]3d). Then the

probability of E can be bounded from above by φ3 ·V in the original random experiment
because the density of the random vector (P,Q1, Q2) is bounded from above by φ3 as
P , Q1, and Q2 are independent vectors whose densities are bounded by φ. Since ∆ is
invariant under translating O, P , Q1, and Q2 by the same vector, we obtain

Vol
(
Rx ∩ [0, 1]3d

)
= Vol

(
R0d ∩ ([−x1, 1− x1]× · · · × [−xd, 1− xd])3

)
≤ Vol

(
R0d ∩ [−1, 1]3d

)
,

where the equality follows from shifting Rx∩ [0, 1]3d by (−x,−x,−x). Hence, V ≤ V ′ :=
Vol(R0d ∩ [−1, 1]3d). In the simplified random experiment, P , Q1, and Q2 are chosen
uniformly from the hyperball centered at the origin with radius

√
d. This hyperball

contains the hypercube [−1, 1]d completely. Hence, the region on which the vector
(P,Q1, Q2) is uniformly distributed contains the regionR0d∩[−1, 1]3d completely. As the
vector (P,Q1, Q2) is uniformly distributed on a region of volume Vd(

√
d)3, where Vd(

√
d)

denotes the volume of a d-dimensional hyperball with radius
√
d, this implies that the

probability of E in the simplified random experiment can be bounded from below by
V ′/Vd(

√
d)3. Since a d-dimensional hyperball with radius

√
d is contained in a hypercube

with side length 2
√
d, its volume can be bounded from above by (2

√
d)d = (4d)d/2.

Hence, the probability of E in the simplified random experiment is at least V ′/(4d)3d/2,
and we have argued above that the probability of E in the original random experiment is
at most φ3·V ≤ φ3·V ′. Hence, the probability of E in the simplified random experiment is
smaller by at most a factor of ((4d)d/2φ)3 compared to the original random experiment.

Taking into account this factor and using Lemma 4.11 c) and a union bound over
all possible 2-changes yields the following lemma about the improvement of a single
2-change.

Lemma 4.12. The probability that there exists an improving 2-change whose improve-
ment is at most ε ≤ 1/2 is bounded from above by O(n4 · φ3 · ε · log(1/ε)).

Proof. As in the proof of Theorem 4.1, we first consider a fixed 2-change S, whose
improvement we denote by ∆(S). For the simplified random experiment, Lemma 4.11 c)
yields the following bound on the probability that the improvement ∆(S) lies in (0, ε]:

Pr [∆(S) ∈ (0, ε]] = κ

∫ ε

0
ln
(
δ−1
)
dδ =

[
δ ln

(
δ−1
)

+ δ
]ε
0

= ε ln ε−1 + ε ≤ 3ε ln ε−1,
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where we used ε ≤ 1/2 for the last inequality.
We have argued that the probability of the event ∆(S) ∈ (0, ε] in the simplified

random experiment is smaller by at most a factor of ((4d)d/2φ)3 compared to the original
random experiment. Together with the factor of at most n4 coming from a union bound
over all possible 2-changes S, we obtain for the original random experiment

Pr [∃S : ∆(S) ∈ (0, ε]] ≤ 3ε ln ε−1 · ((4d)d/2φ)3 · n4,

which proves the lemma because d is regarded as a constant.

Using similar arguments as in the proof of Theorem 4.1 yields the following upper
bound on the expected number of 2-changes.

Theorem 4.13. Starting with an arbitrary tour, the expected number of steps performed
by 2-Opt on φ-perturbed Euclidean instances is O(n7 · log2 (n) · φ3).

Proof. As in the proof of Theorem 4.1, let T denote the longest path in the state graph.
Let ∆min denote the smallest improvement made by any of the 2-changes. Then, as in
the proof of Theorem 4.1, we know that T ≥ t implies that ∆min ≤ (

√
dn)/t because

each of the n edges in the initial tour has length at most
√
d. As T cannot exceed n!,

we obtain with Lemma 4.12

E [T ] =
n!∑
t=1

Pr [T ≥ t] ≤
n!∑
t=1

Pr

[
∆min ≤

√
dn

t

]

= O

(
n!∑
t=1

n5 · φ3 ·
√
d

t
· log

(
t√
dn

))

= O

(
n!∑
t=1

n5 · φ3 ·
√
d

t
· ln t

)

= O

(
n5 · φ3 ·

√
d ·
∫ n!

t=1

ln t

t
dt

)
= O

(
n5 · φ3 ·

√
d ·
[

1

2
ln2 t

]n!

t=1

)
= O

(
n7 · φ3 ·

√
d · ln2 n

)
,

which proves the lemma because d is regarded as a constant.

Pairs of type 0. In order to improve upon Theorem 4.13, we consider pairs of linked
2-changes as in the analysis of φ-perturbed Manhattan instances. Since our analysis of
pairs of linked 2-changes is based on the analysis of a single 2-change that we presented
in the previous section, we also have to consider simplified random experiments when
analyzing pairs of 2-changes. For a fixed pair of type 0, we assume that point v3 is
chosen to be the origin and the other points v1, v2, v4, v5, and v6 are chosen uniformly
at random from a hyperball with radius

√
d centered at v3. Let E denote the event that

both ∆1 and ∆2 lie in the interval [0, ε], for some given ε. With the same arguments
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as above, one can see that the probability of E in the simplified random experiment is
smaller compared to the original experiment by at most a factor of ((4d)d/2φ)5. The
exponent 5 is due to the fact that we have now five other points instead of only three.

Pairs of type 1. For a fixed pair of type 1, we consider the simplified random ex-
periment in which v2 is placed in the origin and the other points v1, v3, v4, and v5 are
chosen uniformly at random from a hyperball with radius

√
d centered at v2. In this

case, the probability in the simplified random experiment is smaller by at most a factor
of ((4d)d/2φ)4. The exponent 4 is due to the fact that we have now four other points.

4.2.3 Analysis of pairs of linked 2-changes

Finally, we can prove Lemma 4.8.

Proof of Lemma 4.8. We start by considering pairs of type 0. We consider the simplified
random experiment in which v3 is chosen to be the origin and the other points are drawn
uniformly at random from a hyperball with radius

√
d centered at v3. If the position of

the point v1 is fixed, then the events ∆1 ∈ [0, ε] and ∆2 ∈ [0, ε] are independent as only
the vertices v1 and v3 appear in both the first and the second step. In fact, because
the densities of the points v2, v4, v5, and v6 are rotationally symmetric, the concrete
position of v1 is not important in our simplified random experiment anymore; only the
distance R between v1 and v3 is of interest.

For i ∈ [2], we determine the conditional probability of the event ∆i ∈ [0, ε] under
the condition that the distance d(v1, v3) is fixed with the help of Lemma 4.11 a), and
obtain

Pr [∆i ∈ [0, ε] | d(v1, v3) = r] =

∫ ε

0
f∆|Ri=r(δ) dδ ≤

∫ ε

0

κ√
r

ln
(
δ−1
)
dδ

=
κ√
r
·
[
δ
(
1 + ln

(
δ−1
))]ε

0
=

κ√
r
· ε · (1 + ln(1/ε)) ≤ 3κ√

r
· ε · ln(1/ε), (4.4)

where the last inequality follows because, as ε ≤ 1/2, 1 ≤ 2 ln(1/ε). Since for fixed
distance d(v1, v3) the random variables ∆1 and ∆2 are independent, we obtain

Pr [∆1,∆2 ∈ [0, ε] | d(v1, v3) = r] ≤ 9κ2

r
· ε2 · ln2(1/ε). (4.5)

For r ∈ [0,
√
d], the density fd(v1,v3) of the random variable d(v1, v3) in the simplified

random experiment is rd−1/dd/2−1. In order to see this, remember that v3 is chosen to
be the origin and v1 is chosen uniformly at random from a hyperball with radius

√
d

centered at the origin. The volume Vd(r) of a d-dimensional hyperball with radius r is
Cd · rd for some constant Cd depending on d. Now the density fd(v1,v3) can be written
as

fd(v1,v3)(r) =
d
drVd(r)

Vd(
√
d)

=
Cd · d · rd−1

Cd · dd/2
=

rd−1

dd/2−1
.

Combining this observation with the bound given in (4.5) yields

Pr [∆1,∆2 ∈ [0, ε]] ≤
∫ √d

0

(
9κ2

r
ε2 ln2(1/ε)

)(
rd−1

dd/2−1

)
dr = O

(
ε2 · ln2(1/ε)

)
,
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where the last equation follows because d is assumed to be a constant. There are O(n6)
different pairs of type 0; hence a union bound over all of them concludes the proof of
the first term in the sum in Lemma 4.8 when taking into account the factor ((4d)d/2φ)5

that results from considering the simplified random experiment (see Section 4.2.2).
It remains to consider pairs of type 1. We consider the simplified random experiment

in which v2 is chosen to be the origin and the other points are drawn uniformly at random
from a hyperball with radius

√
d centered at v2. In contrast to pairs of type 0, pairs

of type 1 exhibit larger dependencies as only 5 different vertices are involved in these
pairs. Fix one pair of type 1. The two 2-changes share the whole triangle consisting
of v1, v2, and v3. In the second step, there is only one new vertex, namely v5. Hence,
there is not enough randomness contained in a pair of type 1 such that ∆1 and ∆2 are
nearly independent as for pairs of type 0.

We start by considering pairs of type 1 a) as defined in Section 4.1.1. First, we
analyze the probability that ∆1 lies in the interval [0, ε]. After that, we analyze the
probability that ∆2 lies in the interval [0, ε] under the condition that the points v1, v2,
v3, and v4 have already been chosen. In the analysis of the second step we cannot make
use of the fact that the distances d(v1, v3) and d(v2, v3) are random variables anymore
since we exploited their randomness already in the analysis of the first step. The only
distances whose randomness we can exploit are the distances d(v1, v5) and d(v2, v5). We
pessimistically assume that the distances d(v1, v3) and d(v2, v3) have been chosen by an
adversary. This means the adversary can determine an interval of length ε in which the
random variable d(v2, v5)− d(v1, v5) must lie in order for ∆2 to lie in [0, ε].

Analogously to (4.4), the probability of the event ∆1 ∈ [0, ε] under the condition
d(v1, v2) = r can be bounded by

Pr [∆1 ∈ [0, ε] | d(v1, v2) = r] ≤ 3κ√
r
· ε · ln(1/ε). (4.6)

Due to Lemma 4.11 d), the conditional density of the random variable Z = d(v2, v5)−
d(v1, v5) under the condition d(v1, v2) = r can be bounded by

fZ| d(v1,v2)=r(z) ≤
κ√

r2 − z2

for |z| < r. Note that Lemma 4.11 d) applies if we set O = v2, P = v1, and Qi = v5.
Then T = d(O,P ) = d(v1, v2).

This upper bound on the density function fZ| d(v1,v2)=r(z) is symmetric around zero,
it is monotonically increasing for z ∈ [0, r), and it is monotonically decreasing in (−r, 0).
This implies that the intervals the adversary can specify that have the highest upper
bound on the probability of Z falling into them are [−r,−r + ε] and [r − ε, r]. Hence,
the conditional probability of the event ∆2 ∈ [0, ε] under the condition d(v1, v2) = r
and for fixed points v3 and v4 is bounded from above by∫ r

max{r−ε,−r}

κ√
r2 − z2

dz,

where the lower bound in the integral follows because Z can only take values in [−r, r].
This can be rewritten as

κ ·
∫ r

max{r−ε,−r}

1√
r + |z|

· 1√
r − |z|

dz ≤ κ√
r
·
∫ r

max{r−ε,−r}

1√
r − |z|

dz.
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For ε ≤ r, we have r − ε ≥ 0 ≥ −r and hence,

κ√
r
·
∫ r

max{r−ε,−r}

1√
r − |z|

dz =
κ√
r
·
∫ r

r−ε

1√
r − z dz =

2κ
√
ε√
r
≤ 4κ

√
ε√
r
.

For ε ∈ (r, 2r], we have 0 ≥ r − ε ≥ −r and hence,

κ√
r
·
∫ r

max{r−ε,−r}

1√
r − |z|

dz =
κ√
r
·
(∫ r

0

1√
r − z dz +

∫ 0

r−ε

1√
r + z

dz

)
≤ κ√

r
·
(

2
√
r +

∫ 0

−r

1√
r + z

dz

)
=

4κ
√
r√
r
≤ 4κ

√
ε√
r
,

where we used ε > r for the last inequality. For ε > 2r, we have r − ε ≤ −r and hence,

κ√
r
·
∫ r

max{r−ε,−r}

1√
r − |z|

dz =
κ√
r
·
∫ r

−r

1√
r − |z|

dz = 2κ ≤ 2κ
√
ε√
r
≤ 4κ

√
ε√
r
,

where we used ε > r for the penultimate inequality. Altogether this argument shows
that

Pr [∆2 ∈ [0, ε] | v1, v2, v3, v4 fixed arbitrarily with d(v1, v2) = r] ≤ 4κ
√
ε√
r
. (4.7)

Since (4.7) uses only the randomness of v5 which is independent of ∆1, we can multiply
the upper bounds from (4.6) and (4.7) to obtain

Pr [∆1,∆2 ∈ [0, ε] | d(v1, v2) = r] ≤ 12κ2

r
ε3/2 · ln(1/ε).

In order to get rid of the condition d(v1, v2) = r, we integrate over all possible values
the random variable d(v1, v2) can take, yielding

Pr [∆1,∆2 ∈ [0, ε]] =

∫ √d
0

rd−1

dd/2−1
·Pr [∆1,∆2 ∈ [0, ε] | d(v1, v2) = r] dr

≤
∫ √d

0

12κ2 · rd−2

dd/2−1
· ε3/2 · ln(1/ε) dr = O

(
ε3/2 · ln(1/ε)

)
,

where the last equation follows because d is assumed to be constant. Applying a union
bound over all O(n5) possible pairs of type 1 a) concludes the proof when one takes into
account the factor ((4d)d/2φ)4 due to considering the simplified random experiment (see
Section 4.2.2).

For pairs of type 1 b), the situation looks somewhat similar. We analyze the first
step and in the second step, we can only exploit the randomness of the distances d(v2, v5)
and d(v3, v5). Due to Lemma 4.11 b) and similarly to (4.4), the probability of the event
∆1 ∈ [0, ε] under the condition d(v2, v3) = τ can be bounded by

Pr [∆1 ∈ [0, ε] | d(v2, v3) = τ ] ≤ 3κ

τ
· ε · ln(1/ε). (4.8)

The remaining analysis of pairs of type 1 b) can be carried out completely analogously
to the analysis of pairs of type 1 a).
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4.2.4 The expected number of 2-changes

Based on Lemmas 4.3 and 4.8, we are now able to prove part b) of Theorem 1.2,
which states that the expected length of the longest path in the 2-Opt state graph is
O(n4+1/3 · log(nφ) · φ8/3) for φ-perturbed Euclidean instances with n points.

Proof of Theorem 1.2 b). We use the same notation as in the proof of part a) of the
theorem. For t > 2n2, we have t/6− 7n(n− 1)/24 > t/48 and hence using Lemma 4.8

with ε = 48
√
dn
t yields

Pr [T ≥ t] ≤ Pr

[
∆∗min ≤

48
√
dn

t

]

= O

(
min

{
n8 · log2(t) · φ5

t2
, 1

})
+O

(
min

{
n13/2 · log(t) · φ4

t3/2
, 1

})
.

This implies that the expected length of the longest path in the state graph is bounded
from above by

2n2 +
n!∑

t=2n2+1

(
O

(
min

{
n8 · log2(t) · φ5

t2
, 1

})
+O

(
min

{
n13/2 · log(t) · φ4

t3/2
, 1

}))
.

(4.9)
In the following, we use the fact that, for a > 0,∫ ∞

a

ln2(x)

x2
dx =

[
− ln2(x) + 2 ln(x) + 2

x

]∞
a

= O

(
ln2(a)

a

)
.

For tA = n4 · log(nφ) · φ5/2, the first sum in (4.9) can be bounded as follows:

n!∑
t=2n2+1

O

(
min

{
n8 · log2(t) · φ5

t2
, 1

})
≤ tA +O

(∫ ∞
t=tA

n8 · log2(t) · φ5

t2
dt

)

= tA +O

([
−n

8 · log2(t) · φ5

t

]∞
t=tA

)
= tA +O

(
n8 · log2(tA) · φ5

tA

)
= tA +O

(
n8 · log2(nφ) · φ5

tA

)
= O(tA).

In the following, we use the fact that, for a > 0,∫ ∞
a

ln(x)

x3/2
dx =

[
−2 ln(x) + 4√

x

]∞
a

= O

(
ln(a)√
a

)
.
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For tB = n13/3 · log2/3(nφ) · φ8/3, the second sum in (4.9) can be bounded as follows:

n!∑
t=2n2+1

O

(
min

{
n13/2 · log(t) · φ4

t3/2
, 1

})
≤ tB +O

(∫ ∞
t=tB

n13/2 · log(t) · φ4

t3/2
dt

)

= tB +O

[−n13/2 · log(t) · φ4

√
t

]∞
t=tB

 = tB +O

(
n13/2 · log(tB) · φ4

√
tB

)

= tB +O

(
n13/2 · log(nφ) · φ4

√
tB

)
= O(tB).

Together this yields

E [T ] = O
(
n4 · log(nφ) · φ5/2

)
+O

(
n13/3 · log2/3(nφ) · φ8/3

)
,

which concludes the proof of part b) of the theorem.

Using the same observations as in the proof of Theorem 1.3 a) also yields part b):

Proof of Theorem 1.3 b). Estimating the length of the initial tour by O(n(d−1)/d · log n)
instead of O(n) improves the upper bound on the expected number of 2-changes by a
factor of Θ(n1/d/ log n) compared to Theorem 1.2 b). This observation yields the bound
claimed in Theorem 1.3 b).

5 Expected Approximation Ratio

In this section, we consider the expected approximation ratio of the solution found by
2-Opt on φ-perturbed Lp instances. Chandra, Karloff, and Tovey [CKT99] show that if
one has a set of n points in the unit hypercube [0, 1]d and the distances are measured
according to a metric that is induced by a norm, then every locally optimal solution has
length at most c · n(d−1)/d for an appropriate constant c depending on the dimension d
and the metric. Hence, it follows for every Lp metric that 2-Opt yields a tour of length
O(n(d−1)/d) on φ-perturbed Lp instances. This implies that the approximation ratio of
2-Opt on these instances can be bounded from above by O(n(d−1)/d)/Opt, where Opt
denotes the length of the shortest tour. We will show a lower bound on Opt that holds
with high probability in φ-perturbed Lp instances. Based on this, we prove Theorem 1.4.

Proof of Theorem 1.4. Let v1, . . . , vn ∈ Rd denote the points of the φ-perturbed in-
stance. We denote by k the largest integer k ≤ nφ that can be written as k = `d for
some ` ∈ N. We partition the unit hypercube into k smaller hypercubes with volume
1/k each and analyze how many of these smaller hypercubes contain at least one of the
points. Assume that X > 3d of these hypercubes contain a point; then the optimal tour
must have length at least ⌈

X

3d

⌉
· 1
d
√
k
. (5.1)
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In order to see this, we construct a set P ⊆ {v1, . . . , vn} of points as follows: Consider
the points v1, . . . , vn one after another, and insert a point vi into P if P does not contain
a point in the same hypercube as vi or in one of its 3d − 1 neighboring hypercubes yet.
Due to the triangle inequality, the optimal tour on P is at most as long as the optimal
tour on v1, . . . , vn. Furthermore, P contains at least

⌈
X/3d

⌉
≥ 2 points and every edge

between two points from P has length at least 1/ d
√
k since P does not contain two points

in the same or in two neighboring hypercubes. Hence, it remains to analyze the random
variable X. For each hypercube i with 1 ≤ i ≤ k, we define a random variable Xi which
takes value 0 if hypercube i is empty and value 1 if hypercube i contains at least one
point. The density functions that specify the locations of the points induce for each
pair of hypercube i and point j a probability pji such that point j falls into hypercube

i with probability pji . Hence, one can think of throwing n balls into k bins in a setting
where each ball has its own probability distribution over the bins. Due to the bounded
density, we have pji ≤ φ/k. For each hypercube i, let Mi denote the probability mass
associated with hypercube i, that is

Mi =
n∑
j=1

pji ≤
nφ

k
.

We can write the expected value of the random variable Xi as

E [Xi] = Pr [Xi = 1] = 1−
n∏
j=1

(1− pji ) ≥ 1−
(

1− Mi

n

)n

as, under the constraint
∑

j(1− p
j
i ) = n−Mi, the term

∏
j(1− p

j
i ) is maximized if all

pji are equal. Due to linearity of expectation, the expected value of X is

E [X] ≥
k∑
i=1

(
1−

(
1− Mi

n

)n)
= k −

k∑
i=1

(
1− Mi

n

)n
.

Observe that
∑

iMi = n and hence, also the sum
∑

i (1−Mi/n) = k − 1 is fixed. As
the function f(x) = xn is convex for n ≥ 1, the sum

∑
i(1−Mi/n)n becomes maximal

if the Mi’s are chosen as unbalanced as possible. Hence, we assume that dk/φe of the
Mi’s take their maximal value of nφ/k and the other Mi’s are zero. This yields, for
sufficiently large n,

E [X] ≥k −
(⌈

k

φ

⌉(
1− φ

k

)n
+

(
k −

⌈
k

φ

⌉))
=

⌈
k

φ

⌉
−
⌈
k

φ

⌉
·
(

1− φ

k

)n
≥k
φ
− 2k

φ

(
1− φ

k

)n
≥k
φ

(
1− 2

(
1− 1

n

)n)
≥ k

φ

(
1− 2

e

)
≥ k

4φ
.
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For the second inequality we have used that k
φ ≥ 1 for sufficiently large n and hence

⌈
k
φ

⌉
≤

2k
φ . For the third inequality we have used that n ≥ k

φ , which follows from the definition

of k as the largest integer k ≤ nφ that can be written as k = `d for some ` ∈ N. This
definition also implies

nφ < (`+ 1)d = (
d
√
k + 1)d ≤ (2

d
√
k)d = 2dk

and hence, E [X] ≥ n/2d+2.
Next we show that X is sharply concentrated around its mean value. The random

variable X is the sum of k 0-1-random variables Xi. If these random variables were
independent, we could simply use a Chernoff bound to bound the probability that X
takes a value that is much smaller than its mean value. Intuitively, whenever we already
know that some of the Xi’s are zero, then the probability of the event that another Xi

also takes the value zero becomes smaller. Hence, intuitively, the dependencies can only
help to bound the probability that X takes a value smaller than its mean value.

To formalize this intuition, we use the framework of negatively associated random
variables, introduced by Dubhashi and Ranjan [DR98]. In Appendix D, we repeat the
formal definition and we show that the Xi are negatively associated. Dubhashi and
Ranjan show (Proposition 7 of [DR98]) that in the case of negatively associated random
variables, one can still apply a Chernoff bound. The Chernoff bound from [MR95]
implies that, for any δ ∈ (0, 1),

Pr [X ≤ (1− δ) ·E [X]] ≤ exp

(
−E [X] · δ2

2

)
.

This yields

Pr
[
X ≤ n

2d+3

]
≤ Pr

[
X ≤ E [X]

2

]
≤ exp

(
−E [X]

8

)
≤ exp

(
− n

2d+5

)
, (5.2)

where we used E [X] ≥ n/2d+2 for the first and last inequality.
In order to bound the expected approximation ratio of any locally optimal solution,

we distinguish between two cases:

• If X ≥ n
2d+3 , then, assuming that n is large enough, we have that X > 3d and

hence, (5.1) implies that

Opt ≥
⌈
X

3d

⌉
· 1
d
√
k
≥ X

3d d
√
k
≥ n

2d+33d d
√
k

= Θ

(
n(d−1)/d

d
√
φ

)
,

where we used that k = Θ(nφ) for the last equation. Combining this with Chan-
dra, Karloff, and Tovey’s [CKT99] result that every locally optimal solution has
length at most O(n(d−1)/d) yields an approximation ratio of

O(n(d−1)/d)

Θ
(
n(d−1)/d

d√φ

) = O( d
√
φ).
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• If X < n
2d+3 , then we use n as an upper bound on the approximation ratio of any

locally optimal solution. This bound holds in fact for any possible tour, as the
following argument shows: The length of every tour is bounded from above by n
times the length α of the longest edge. Let u and v be the vertices that this edge
connects. Then every tour has to contain a path between u and v. Due to the
triangle inequality, this path must have length at least α.

We have seen in (5.2) that the event X < n
2d+3 occurs only with exponentially

small probability. This implies that it adds at most

exp
(
− n

2d+5

)
· n = o(1)

to the expected approximation ratio.

This concludes the proof as the contribution of both cases to the expected approximation
ratio is O( d

√
φ).

6 Smoothed Analysis

Smoothed Analysis was introduced by Spielman and Teng [ST04] as a hybrid of worst
case and average case analysis. The semi-random input model in a smoothed analysis
is designed to capture the behavior of algorithms on typical inputs better than a worst
case or average case analysis alone as it allows an adversary to specify an arbitrary
input which is randomly perturbed afterwards. In Spielman and Teng’s analysis of
the Simplex algorithm the adversary specifies an arbitrary linear program which is
perturbed by adding independent Gaussian random variables to each number in the
linear program. Our probabilistic analysis of Manhattan and Euclidean instances can
also be seen as a smoothed analysis in which an adversary can choose the distributions
for the points over the unit hypercube. The adversary is restricted to distributions
that can be represented by densities that are bounded by φ. Our model cannot handle
Gaussian perturbations directly because the support of Gaussian random variables is
not bounded.

Assume that every point v1, . . . , vn is described by a density whose support is re-
stricted to the hypercube [−α, 1 + α]d, for some α ≥ 1. Then after appropriate scaling
and translating, we can assume that all supports are restricted to the unit hypercube
[0, 1]d. Thereby, the maximal density φ increases by at most a factor of (2α + 1)d.
Hence, after appropriate scaling and translating, Theorems 1.2, 1.3, and 1.4 can still be
applied if one takes into account the increased densities.

One possibility to cope with Gaussian perturbations is to consider truncated Gaus-
sian perturbations. In such a perturbation model, the coordinates of each point are
initially chosen from [0, 1]d and then perturbed by adding Gaussian random variables
with mean 0 and with some standard deviation σ to them that are conditioned to lie
in [−α, α] for some α ≥ 1. The maximal density of such truncated Gaussian random
variables for σ ≤ 1 is bounded from above by

1/(σ
√

2π)

1− σ · exp(−α2/(2σ2))
. (6.1)
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This is shown by the following calculation in which we denote by X a Gaussian random
variable with mean 0 and standard deviation σ, by f(z) = exp(−z2/(2σ2))/(σ

√
2π)

its density function and by fX|X∈[−α,α] the density of X conditioned on the fact that
X ∈ [−α, α]:

fX|X∈[−α,α](z) ≤
f(z)

Pr [X ∈ [−α, α]]
=

exp(−z2/(2σ2))

σ
√

2π ·Pr [X ∈ [−α, α]]

≤ 1/(σ
√

2π)

Pr [X ∈ [−α, α]]
=

1/(σ
√

2π)

1−Pr [X /∈ [−α, α]]

≤ 1/(σ
√

2π)

1− σ · exp(−a2/(2σ2))
,

where we used the following bound on the probability that X does not lie in [−α, α]:

Pr [X /∈ [−α, α]] =

∫ ∞
α

f(z) dz +

∫ −α
−∞

f(z) dz

= 2

∫ ∞
α

f(z) dz =

√
2

σ
√
π

∫ ∞
α

exp(−z2/(2σ2)) dz

≤
√

2

σ
√
π

∫ ∞
α

z · exp(−z2/(2σ2)) dz

=

√
2

σ
√
π

[
−σ2 exp(−z2/(2σ2))

]∞
α

=
σ
√

2√
π

exp(−α2/(2σ2)) ≤ σ · exp(−α2/(2σ2)), (6.2)

where the inequality follows from α ≥ 1.
After such a truncated perturbation, all points lie in the hypercube [−α, 1 + α]d.

Hence, one can apply Theorems 1.2, 1.3, and 1.4 with

φ =
(2α+ 1)d

(σ
√

2π − σ2
√

2π exp(−α2/(2σ2)))d
= O

(
αd

σd

)
,

where the first equality follows from (6.1) and the observation that shifting and scaling
the hypercube [−α, 1 + α]d to [0, 1]d leads to densities that are larger than the original
densities by at most a factor of (2α+ 1)d. The second equality follows because the term
σ2
√

2π exp(−α2/(2σ2)) is in o(σ) if σ goes to 0.
It is not necessary to truncate the Gaussian random variables if the standard de-

viation is small enough. For σ ≤ min{α/
√

2(n+ 1) lnn+ 2 ln d, 1}, the probability
that one of the Gaussian random variables has an absolute value larger than α ≥ 1 is
bounded from above by n−n. This follows from a union bound over all dn Gaussian
variables and (6.2):

dn ·Pr [X /∈ [−α, α]] ≤ exp(ln(dn))
(
σ · exp(−α2/(2σ2))

)
≤ exp(ln(dn)− α2/(2σ2)) ≤ exp(ln(dn)− (n+ 1) lnn− ln d) = n−n.
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We have used σ ≤ 1 for the second inequality. In this case, even if one does not truncate
the random variables, Theorems 1.2, 1.3, and 1.4 can be applied with φ = O(αd/σd).
To see this, it suffices to observe that the worst-case bound for the number of 2-changes
is n! and the worst-case approximation ratio is O(log n) [CKT99]. Multiplying these
values with the failure probability of n−n adds less than 1 to the expected values. In
particular, this implies that the expected length of the longest path in the state graph
is bounded by O(poly(n, 1/σ)).

7 Conclusions and Open Problems

We have shown several new results on the running time and the approximation ratio
of the 2-Opt heuristic. However, there are still a variety of open problems regarding
this algorithm. Our lower bounds only show that there exist families of instances on
which 2-Opt takes an exponential number of steps if it uses a particular pivot rule. It
would be interesting to analyze the diameter of the state graph and to either present
instances on which every pivot rule needs an exponential number of steps or to prove
that there is always an improvement sequence of polynomial length to a locally optimal
solution. Also the worst number of local improvements for some natural pivot rules like,
e.g., the one that always makes the largest possible improvement or the one that always
chooses a random improving 2-change, is not known yet. Furthermore, the complexity
of computing locally optimal solutions is open. The only result in this regard is due to
Krentel [Kre89] who shows that it is PLS-complete to compute a local optimum for the
metric TSP for k-Opt for some constant k. It is not known whether his construction
can be embedded into the Euclidean metric and whether it is PLS-complete to compute
locally optimal solutions for 2-Opt. Fischer and Torenvliet [FT95] show, however, that
for the general TSP, it is PSPACE-hard to compute a local optimum for 2-Opt that is
reachable from a given initial tour.

The obvious open question concerning the probabilistic analysis is how the gap be-
tween experiments and theory can be narrowed further. In order to tackle this question,
new methods seem to be necessary. Our approach, which is solely based on analyzing
the smallest improvement made by a sequence of linked 2-changes, seems to yield too
pessimistic bounds. Another interesting area to explore is the expected approxima-
tion ratio of 2-Opt. In experiments, approximation ratios close to 1 are observed. For
instances that are chosen uniformly at random, the bound on the expected approxima-
tion ratio is a constant but unfortunately a large one. It seems to be a very challenging
problem to improve this constant to a value that matches the experimental results.

Besides 2-Opt, there are also other local search algorithms that are successful for
the traveling salesperson problem. In particular, the Lin-Kernighan heuristic [LK73]
is one of the most successful local search algorithm for the symmetric TSP. It is a
variant of k-Opt in which k is not fixed and it can roughly be described as follows:
Each local modification starts by removing one edge {a, b} from the current tour, which
results in a Hamiltonian path with the two endpoints a and b. Then an edge {b, c} is
added, which forms a cycle; there is a unique edge {c, d} incident to c whose removal
breaks the cycle, producing a new Hamiltonian path with endpoints a and d. This
operation is called a rotation. Now either a new Hamiltonian cycle can be obtained
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by adding the edge {a, d} to the tour or another rotation can be performed. There
are a lot of different variants and heuristic improvements of this basic scheme, but
little is known theoretically. Papadimitriou [Pap92] shows for a variant of the Lin-
Kernighan heuristic that computing a local optimum is PLS-complete, which is a sharp
contrast to the experimental results. Since the Lin-Kernighan heuristic is widely used in
practice, a theoretical explanation for its good behavior in practice is of great interest.
Our analysis of 2-Opt relies crucially on the fact that there are only a polynomial
number of different 2-changes. For the Lin-Kernighan heuristic, however, the number
of different local improvements is exponential. Hence, it is an interesting question as to
whether nonetheless the smallest possible improvement is polynomially large or whether
different methods yield a polynomial upper bound on the expected running time of the
Lin-Kernighan heuristic.

A Inequalities from Section 3.2.2

Inequalities corresponding to the improvements made by the 2-changes in the sequence
in which GPn−1 changes its state from (S,L) to (S, S) while resetting GRn−1:
Inequality 1:

p
√

9.7p + 3.6p + p
√

4.3p + 6.9p − p
√

0.3p + 1.7p − p
√

14.3p + 1.6p > 0

For p ≥ 3, we obtain

p
√

0.3p + 1.7p = 1.7 · p
√

1 +
(

0.3
1.7

)p ≤ 1.7 · 3

√
1 +

(
0.3
1.7

)3
< 1.71

and
p
√

14.3p + 1.6p = 14.3 · p
√

1 +
(

1.6
14.3

)p ≤ 14.3 · 3

√
1 +

(
1.6
14.3

)3
< 14.31.

Hence, for p ≥ 3,

p
√

9.7p + 3.6p+ p
√

4.3p + 6.9p− p
√

0.3p + 1.7p− p
√

14.3p + 1.6p ≥ 9.7+6.9−1.71−14.31 > 0.

Inequality 2:

p
√

0.0p + 1.0p + p
√

8.7p + 14.3p − p
√

1.5p + 7.1p − p
√

7.2p + 6.2p > 0

For p ≥ 4, we obtain

p
√

1.5p + 7.1p = 7.1 · p
√

1 +
(

1.5
7.1

)p ≤ 7.1 · 4

√
1 +

(
1.5
7.1

)4
< 7.11

and
p
√

7.2p + 6.2p = 7.2 · p
√

1 +
(

6.2
7.2

)p ≤ 7.2 · 4

√
1 +

(
6.2
7.2

)4
< 8.04.

Hence, for p ≥ 4,

p
√

0.0p + 1.0p+ p
√

8.7p + 14.3p− p
√

1.5p + 7.1p− p
√

7.2p + 6.2p ≥ 1.0+14.3−7.11−8.04 > 0.
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For the remaining case p = 3, the inequality can simply be checked by plugging in the
appropriate values.
Inequality 3:

p
√

1.5p + 7.1p + p
√

4.3p + 6.9p − p
√

3.5p + 3.7p − p
√

9.3p + 3.9p > 0

For p ≥ 4, we obtain

p
√

3.5p + 3.7p = 3.7 · p
√

1 +
(

3.5
3.7

)p ≤ 3.7 · 4

√
1 +

(
3.5
3.7

)4
< 4.29

and
p
√

9.3p + 3.9p = 9.3 · p
√

1 +
(

3.9
9.3

)p ≤ 9.3 · 4

√
1 +

(
3.9
9.3

)4
< 9.38.

Hence, for p ≥ 4,

p
√

1.5p + 7.1p+ p
√

4.3p + 6.9p− p
√

3.5p + 3.7p− p
√

9.3p + 3.9p ≥ 7.1+6.9−4.29−9.38 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in the
appropriate values.
Inequality 4:

p
√

0.0p + 1.0p + p
√

14.3p + 1.6p − p
√

6.5p + 1.6p − p
√

7.8p + 4.2p > 0

For p ≥ 3, we obtain

p
√

6.5p + 1.6p = 6.5 · p
√

1 +
(

1.6
6.5

)p ≤ 6.5 · 3

√
1 +

(
1.6
6.5

)3
< 6.54

and
p
√

7.8p + 4.2p = 7.8 · p
√

1 +
(

4.2
7.8

)p ≤ 7.8 · 3

√
1 +

(
4.2
7.8

)3
< 8.19.

Hence, for p ≥ 3,

p
√

0.0p + 1.0p+ p
√

14.3p + 1.6p− p
√

6.5p + 1.6p− p
√

7.8p + 4.2p ≥ 1.0+14.3−6.54−8.19 > 0.

Inequality 5:

p
√

0.3p + 1.7p + p
√

7.2p + 6.2p − p
√

4.0p + 5.2p − p
√

3.5p + 2.7p > 0

For p ≥ 7, we obtain

p
√

4.0p + 5.2p = 5.2 · p
√

1 +
(

4.0
5.2

)p ≤ 5.2 · 7

√
1 +

(
4.0
5.2

)7
< 5.32

and
p
√

3.5p + 2.7p = 3.5 · p
√

1 +
(

2.7
3.5

)p ≤ 3.5 · 7

√
1 +

(
2.7
3.5

)7
< 3.58.
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Hence, for p ≥ 7,

p
√

0.3p + 1.7p+ p
√

7.2p + 6.2p− p
√

4.0p + 5.2p− p
√

3.5p + 2.7p > 1.7+7.2−5.32−3.58 = 0.

For the remaining cases p ∈ {3, 4, 5, 6}, the inequality can simply be checked by plugging
in the appropriate values.
Inequality 6:

p
√

3.5p + 3.7p + p
√

7.8p + 4.2p − p
√

3.5p + 2.7p − p
√

7.8p + 3.2p > 0

For p ≥ 5, we obtain

p
√

3.5p + 2.7p = 3.5 · p
√

1 +
(

2.7
3.5

)p ≤ 3.5 · 5

√
1 +

(
2.7
3.5

)5
< 3.68

and
p
√

7.8p + 3.2p = 7.8 · p
√

1 +
(

3.2
7.8

)p ≤ 7.8 · 5

√
1 +

(
3.2
7.8

)5
< 7.82.

Hence, for p ≥ 5,

p
√

3.5p + 3.7p+ p
√

7.8p + 4.2p− p
√

3.5p + 2.7p− p
√

7.8p + 3.2p > 3.7+7.8−3.68−7.82 = 0.

For the remaining cases p ∈ {3, 4}, the inequality can simply be checked by plugging in
the appropriate values.
Inequality 7:

p
√

6.5p + 1.6p + p
√

9.3p + 3.9p − p
√

5.0p + 5.5p − p
√

7.8p + 3.2p > 0

For p ≥ 3, we obtain

p
√

5.0p + 5.5p = 5.5 · p
√

1 +
(

5.0
5.5

)p ≤ 5.5 · 3

√
1 +

(
5.0
5.5

)3
< 6.63

and
p
√

7.8p + 3.2p = 7.8 · p
√

1 +
(

3.2
7.8

)p ≤ 7.8 · 3

√
1 +

(
3.2
7.8

)3
< 7.98.

Hence, for p ≥ 3,

p
√

6.5p + 1.6p+ p
√

9.3p + 3.9p− p
√

5.0p + 5.5p− p
√

7.8p + 3.2p ≥ 6.5+9.3−6.63−7.98 > 0.

Inequalities corresponding to the improvements made by the 2-changes in the se-
quence in which gadget GRn−2 resets gadget GPn−1 from (S, S) to (L,L):
Inequality 1:

p
√

27.3p + 21.06p + p
√

5.0p + 5.5p − p
√

13.7p + 0.9p − p
√

18.6p + 16.46p > 0
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For p ≥ 10, we obtain

p
√

13.7p + 0.9p = 13.7 · p
√

1 +
(

0.9
13.7

)p ≤ 13.7 · 10

√
1 +

(
0.9
13.7

)10
< 13.71

and

p
√

18.6p + 16.46p = 18.6 · p
√

1 +
(

16.46
18.6

)p ≤ 18.6 · 10

√
1 +

(
16.46
18.6

)10
< 19.09.

Hence, for p ≥ 10,

p
√

27.3p + 21.06p+ p
√

5.0p + 5.5p− p
√

13.7p + 0.9p− p
√

18.6p + 16.46p > 27.3+5.5−13.71−19.09 = 0.

For the remaining cases p ∈ {3, 4, 5, 6, 7, 8, 9}, the inequality can simply be checked by
plugging in the appropriate values.
Inequality 2:

p
√

4.0p + 5.2p + p
√

60.84p + 24.96p − p
√

60.84p + 23.06p − p
√

4.0p + 3.3p > 0

For p ≥ 4, we obtain

p
√

60.84p + 23.06p = 60.84 · p
√

1 +
(

23.06
60.84

)p ≤ 60.84 · 4

√
1 +

(
23.06
60.84

)4
< 61.16

and
p
√

4.0p + 3.3p = 4.0 · p
√

1 +
(

3.3
4.0

)p ≤ 4.0 · 4

√
1 +

(
3.3
4.0

)4
< 4.4.

Hence, for p ≥ 4,

p
√

4.0p + 5.2p+ p
√

60.84p + 24.96p− p
√

60.84p + 23.06p− p
√

4.0p + 3.3p ≥ 5.2+60.84−61.16−4.4 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in the
appropriate values.
Inequality 3:

p
√

60.84p + 23.06p + p
√

12.3p + 14.4p − p
√

15.8p + 11.8p − p
√

57.34p + 20.46p > 0

For p ≥ 4, we obtain

p
√

15.8p + 11.8p = 15.8 · p
√

1 +
(

11.8
15.8

)p ≤ 15.8 · 4

√
1 +

(
11.8
15.8

)4
< 16.91

and

p
√

57.34p + 20.46p = 57.34 · p
√

1 +
(

20.46
57.34

)p ≤ 57.34 · 4

√
1 +

(
20.46
57.34

)4
< 57.58.

Hence, for p ≥ 4,

p
√

60.84p + 23.06p+ p
√

12.3p + 14.4p− p
√

15.8p + 11.8p− p
√

57.34p + 20.46p ≥ 60.84+14.4−16.91−57.58 > 0.
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For the remaining case p = 3, the inequality can simply be checked by plugging in the
appropriate values.
Inequality 4:

p
√

2.2p + 4.9p + p
√

18.6p + 16.46p − p
√

15.4p + 16.26p − p
√

1.0p + 4.7p > 0

For p ≥ 5, we obtain

p
√

15.4p + 16.26p = 16.26 · p
√

1 +
(

15.4
16.26

)p ≤ 16.26 · 5

√
1 +

(
15.4
16.26

)5
< 18.22

and
p
√

1.0p + 4.7p = 4.7 · p
√

1 +
(

1.0
4.7

)p ≤ 4.7 · 5

√
1 +

(
1.0
4.7

)5
< 4.71.

Hence, for p ≥ 5,

p
√

2.2p + 4.9p+ p
√

18.6p + 16.46p− p
√

15.4p + 16.26p− p
√

1.0p + 4.7p ≥ 4.9+18.6−18.22−4.71 > 0.

For the remaining cases p ∈ {3, 4}, the inequality can simply be checked by plugging in
the appropriate values.
Inequality 5:

p
√

13.7p + 0.9p + p
√

4.0p + 3.3p − p
√

0.0p + 7.8p − p
√

9.7p + 3.6p > 0

For p ≥ 3, we obtain

p
√

9.7p + 3.6p = 9.7 · p
√

1 +
(

3.6
9.7

)p ≤ 9.7 · 3

√
1 +

(
3.6
9.7

)3
< 9.87.

Hence, for p ≥ 3,

p
√

13.7p + 0.9p+ p
√

4.0p + 3.3p− p
√

0.0p + 7.8p− p
√

9.7p + 3.6p ≥ 13.7+4.0−7.8−9.87 > 0.

Inequality 6:

p
√

15.8p + 11.8p + p
√

1.0p + 4.7p − p
√

6.1p + 2.2p − p
√

8.7p + 14.3p > 0

For p ≥ 7, we obtain

p
√

6.1p + 2.2p = 6.1 · p
√

1 +
(

2.2
6.1

)p ≤ 6.1 · 7

√
1 +

(
2.2
6.1

)7
< 6.11

and
p
√

8.7p + 14.3p = 14.3 · p
√

1 +
(

8.7
14.3

)p ≤ 14.3 · 7

√
1 +

(
8.7
14.3

)7
< 14.37.

Hence, for p ≥ 7,

p
√

15.8p + 11.8p+ p
√

1.0p + 4.7p− p
√

6.1p + 2.2p− p
√

8.7p + 14.3p ≥ 15.8+4.7−6.11−14.37 > 0.
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For the remaining cases p ∈ {3, 4, 5, 6}, the inequality can simply be checked by plugging
in the appropriate values.
Inequality 7:

p
√

15.4p + 16.26p + p
√

57.34p + 20.46p − p
√

33.54p + 53.82p − p
√

8.4p + 17.1p > 0

For p ≥ 4, we obtain

p
√

33.54p + 53.82p = 53.82 · p
√

1 +
(

33.54
53.82

)p ≤ 53.82 · 4

√
1 +

(
33.54
53.82

)4
< 55.75

and
p
√

8.4p + 17.1p = 17.1 · p
√

1 +
(

8.4
17.1

)p ≤ 17.1 · 4

√
1 +

(
8.4
17.1

)4
< 17.35.

Hence, for p ≥ 4,

p
√

15.4p + 16.26p+ p
√

57.34p + 20.46p− p
√

33.54p + 53.82p− p
√

8.4p + 17.1p ≥ 16.26+57.34−55.75−17.35 > 0.

For the remaining case p = 3, the inequality can simply be checked by plugging in the
appropriate values.

B Some Probability Theory

Lemma B.1. Let X1, . . . , Xn ∈ [0, 1]d be stochastically independent d-dimensional ran-
dom row vectors, and, for i ∈ [n] and some φ ≥ 1, let fi : [0, 1]d → [0, φ] denote the
joint probability density of the entries of Xi. Furthermore, let λ1, . . . , λk ∈ Zdn be
fixed linearly independent row vectors. For i ∈ [n] and a fixed ε ≥ 0, we denote by Ai
the event that λi · X takes a value in the interval [0, ε], where X denotes the vector
X = (X1, . . . , Xn)T. Under these assumptions,

Pr

[
k⋂
i=1

Ai
]
≤ (εφ)k.

Proof. The main tool for proving the lemma is a change of variables. Instead of using the
canonical basis of the dn-dimensional vector space Rdn, we use the given linear combina-
tions as basis vectors. To be more precise, the basis B that we use consists of two parts:
it contains the vectors λ1, . . . , λk and it is completed by some vectors from the canoni-
cal basis {e1, . . . , edn}, where ei denotes the i-th canonical row vector, i.e., eii = 1 and
eij = 0 for j 6= i. That is, the basis B can be written as {λ1, . . . , λk, eπ(1), . . . , eπ(dn−k)},
for some injective function π : [dn− k]→ [dn].

Let Φ: Rdn → Rdn be defined by Φ(x) = Ax, where A denotes the (dn)×(dn)-matrix

λ1

...
λk

eπ(1)

...

eπ(dn−k)


.
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Since B is a basis of Rdn, the function Φ is a bijection. We define Y = (Y1, . . . , Ydn)T as
Y = Φ(X), and for i ∈ [n], we denote by Y i the vector (Yd(i−1)+1, . . . , Ydi). Let f : Rdn →
R denote the joint density of the entries of the random vectors X1, . . . , Xn, and let
g : Rdn → R denote the joint density of the entries of the random vectors Y 1, . . . , Y n.
Due to the independence of the random vectors X1, . . . , Xn, we have f(x1, . . . , xdn) =
f1(x1, . . . , xd) · · · · · fn(xd(n−1)+1, . . . , xdn). We can express the joint density g as

g(y1, . . . , ydn) = | det
∂

Φ−1(y1, . . . , ydn) | · f(Φ−1(y1, . . . , ydn)),

where det∂ denotes the determinant of the Jacobian matrix of Φ−1 (see, e.g., [ST04]).
The matrix A is invertible as B is a basis of Rdn. Hence, for y ∈ Rdn, Φ−1(y) = A−1y

and the Jacobian matrix of Φ−1 equals A−1. Thus, det∂ Φ−1 = detA−1 = (detA)−1.
Since all entries of A are integers, also its determinant must be an integer, and since
it has rank dn, we know that detA 6= 0. Hence, |detA | ≥ 1 and |detA−1 | ≤ 1.
For y ∈ Rdn, we decompose Φ−1(y) ∈ Rdn into n subvectors with d entries each, i.e.,
Φ−1(y) = (Φ−1

1 (y), . . . ,Φ−1
n (y)) with Φ−1

i (y) ∈ Rd for i ∈ [n]. This yields

g(y) = |detA−1 | · f(Φ−1(y)) ≤ f1(Φ−1
1 (y)) · · · fn(Φ−1

n (y)),

where we used that | detA−1 | ≤ 1 and that the vectors X1, . . . , Xn are stochastically
independent.

The probability we want to estimate can be written as

Pr

[
k⋂
i=1

Ai
]

=

∫ ε

y1=0
· · ·
∫ ε

yk=0

∫ ∞
yk+1=−∞

· · ·
∫ ∞
ydn=−∞

g(y1, . . . , ydn) dydn · · · dy1. (B.1)

Since all entries of the vectors X1, . . . , Xn take only values in the interval [0, 1] and
since for i ∈ {k+ 1, . . . , dn}, the random variable Yi coincides with one of these entries,
(B.1) simplifies to

Pr

[
k⋂
i=1

Ai
]

=

∫ ε

y1=0
· · ·
∫ ε

yk=0

∫ 1

yk+1=0
· · ·
∫ 1

ydn=0
g(y1, . . . , ydn) dydn · · · dy1. (B.2)

By the definition of π, the basis B consists of the vectors λ1, . . . , λk and the canonical
vectors ei for i ∈ Π = {` | ∃j ∈ [dn − k] : π(j) = `}. We divide the vectors e1, . . . , edn

into n groups of d vectors each, i.e., the first group consists of the vectors e1, . . . , ed,
the second group consists of the vectors ed+1, . . . , e2d, and so on. The set of vectors ei

with i /∈ Π, i.e., the vectors from the canonical basis that are replaced by the vectors
λ1, . . . , λk in basis B, can intersect at most k of these groups. In order to simplify the
notation, we reorder and rename the groups such that only vectors from the first k
groups are replaced by the vectors λ1, . . . , λk. As every group consists of d vectors, we
can assume that, after renaming, [dn] \Π ⊆ [dk], i.e., only vectors ei from the canonical
basis with i ≤ dk are replaced by the vectors λ1, . . . , λk in the basis B. After that, we
can reorder and rename the groups k + 1, . . . , n such that π(i) = i, for i > dk. This
implies, in particular, that for i > k we have Φ−1

i (y) = (ydi+1, . . . , yd(i+1)). Under these
assumptions, the density g can be upper bounded as follows:

g(y1, . . . , ydn) ≤ φk · fk+1(ydk+1, . . . , yd(k+1)) · · · fn(yd(n−1)+1, . . . , ydn), (B.3)
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where we bounded each of the densities f1, . . . , fk from above by φ and used that
Φ−1
i (y) = (ydi+1, . . . , yd(i+1)) for i > k.

Putting together (B.2) and (B.3) yields

Pr

[
k⋂
i=1

Ai
]
≤ (εφ)k ·

(∫ 1

ydk+1=0
· · ·
∫ 1

yd(k+1)=0
fk+1(ydk+1, . . . , yd(k+1))

. . .

∫ 1

yd(n−1)+1=0

∫ 1

ydn=0
fn(yd(n−1)+1, . . . , ydn) dydn · · · dydk+1

)
= (εφ)k,

where the last equation follows because fk+1, . . . , fn are density functions. The occur-
rence of εk is due to the first k integrals in (B.2) because each of the variables y1, . . . , yk
is integrated over an interval of length ε and none of them appears in the integrand
coming from (B.3).

C Proofs of some Lemmas from Section 4.2

C.1 Proof of Lemma 4.10

Let a, c ∈ (0, C] for some C > 0. In the following proof, we use the following two
identities (see [BSMM07]):∫ c

0

1√
z(c− z)

dz =

[
arctan

(
z − c/2√
z(c− z)

)]c
0

=
(

lim
x→∞

arctan(x)
)
−
(

lim
x→−∞

arctan(x)

)
=
π

2
− (−π

2
) = π

and ∫ a

0

1√
z(z + c)

dz =
[
ln
( c

2
+ z +

√
z(z + c)

)]a
0

= ln
( c

2
+ a+

√
a(a+ c)

)
− ln

( c
2

)
≤ ln

( c
2

+ a+
√

(a+ c)(a+ c)
)

+ ln

(
2

c

)
= ln

(
3

2
c+ 2a

)
+ ln

(
2

c

)
≤ ln (4C) + ln

(
2

c

)
.

Since in both identities the integrands are non-negative, the following inequalities
are true for any [α1, α2] ⊆ [0, c] and [β1, β2] ⊆ [0, a]:∫ α2

α1

1√
z(c− z)

dz ≤ π (C.1)

and ∫ β2

β1

1√
z(z + c)

dz ≤ ln (4C) + ln

(
2

c

)
. (C.2)

We will frequently use these inequalities in the following.
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Proof of Lemma 4.10. The conditional density of ∆ can be calculated as convolution of
the conditional densities of Z1 and Z2 as follows:

f∆|T=τ,R1=r1,R2=r2(δ) =

∫ ∞
−∞

fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ) dz.

In order to estimate this integral, we distinguish between several cases. In the following,
let κ denote a sufficiently large constant.

First case: τ ≤ r1 and τ ≤ r2.
Since Zi takes only values in the interval [−τ, τ ], we can assume 0 < δ ≤ min{1/2, 2τ}
and

f∆|T=τ,R1=r1,R2=r2(δ) =

∫ τ

−τ+δ
fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ) dz.

Due to Lemma 4.9, we can estimate the densities of Z1 and Z2 by

fZ|T=τ,R=ri(z) ≤
√

2

τ2 − z2
≤
√

2

τ(τ − |z|) ≤
√

2

τ

(
1√
τ − z +

1√
τ + z

)
. (C.3)

For δ ∈ (0,min{1/2, 2τ}], we obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2(δ)

≤2

τ

∫ τ

−τ+δ

(
1√
τ − z +

1√
τ + z

)(
1√

τ − z + δ
+

1√
τ + z − δ

)
dz

=
2

τ

(∫ τ

−τ+δ

1√
(τ − z)(τ − z + δ)

dz +

∫ τ

−τ+δ

1√
(τ + z)(τ − z + δ)

dz

+

∫ τ

−τ+δ

1√
(τ − z)(τ + z − δ)

dz +

∫ τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

)

=
2

τ

(∫ 2τ−δ

0

1√
z′(z′ + δ)

dz′ +

∫ 2τ

δ

1√
z′(2τ + δ − z′)

dz′

+

∫ 2τ−δ

0

1√
z′(2τ − δ − z′)

dz′ +

∫ 2τ−δ

0

1√
z′(z′ + δ)

dz′

)
.

For the four integrals, we used the substitutions z′ = τ − z, z′ = τ + z, z′ = τ − z, and
z′ = τ−δ+z, respectively. Using (C.1) and (C.2) and the fact that 2τ−δ ≤ 2

√
d = O(1)

yields that the previous term is bounded from above by

2

τ

((
ln(4(2

√
d)) + ln

(
2δ−1

))
+ π + π +

(
ln(4(2

√
d)) + ln

(
2δ−1

)))
=

2

τ

(
2π + 2 ln(8

√
d) + 2 ln

(
2δ−1

))
=
O(1) + 4 ln

(
δ−1
)

τ
.

Since we assume that δ ≤ 1/2, the logarithm ln(δ−1) is bounded from below by the
constant ln(2). Using this observation, we can absorb the O(1) term and bound the
previous expression from above by

κ

τ
· ln
(
δ−1
)
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if κ is a large enough constant.
Second case: r1 ≤ τ and r2 ≤ τ .

Since Zi takes only values in the interval [−τ, 2ri − τ ], we can assume 0 < δ ≤
min{1/2, 2r1} and

f∆|T=τ,R1=r1,R2=r2(δ) =

∫ min{2r1−τ,2r2−τ+δ}

−τ+δ
fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ) dz.

The limits of the integral follow because fZ|T=τ,R=r1(z) is only nonzero for z ∈ [−τ, 2r1−
τ ] and fZ|T=τ,R=r2(z − δ) is only nonzero for z ∈ [−τ + δ, 2r2 − τ + δ]. The intersection
of these two intervals is [−τ + δ,min{2r1 − τ, 2r2 − τ + δ}].

Due to Lemma 4.9, we can estimate the densities of Z1 and Z2 by

fZ|T=τ,Ri=ri(z) ≤
√

2

(τ + z)(2ri − τ − z)
≤


√

2
ri(τ+z) if z ≤ ri − τ√

2
ri(2ri−τ−z) if z ≥ ri − τ

≤
√

2

ri

(
1√
τ + z

+
1√

2ri − τ − z

)
. (C.4)

Case 2.1: δ ∈ (max{0, 2(r1 − r2)}, 2r1].
We obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
r1r2

∫ 2r1−τ

−τ+δ

(
1√
τ + z

+
1√

2r1 − τ − z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2√
r1r2

(∫ 2r1−τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz +

∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(τ + z − δ)

dz

+

∫ 2r1−τ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz +

∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(2r2 − τ − z + δ)

dz

)

=
2√
r1r2

(∫ 2r1−δ

0

1√
(z′ + δ)z′

dz′ +

∫ 2r1−δ

0

1√
(2r1 − δ − z′)z′

dz′

+

∫ 2r1

δ

1√
z′(2r2 + δ − z′)

dz′ +

∫ 2r1−δ

0

1√
z′(2(r2 − r1) + δ + z′)

dz′

)
.

For the four integrals, we used the substitutions z′ = z+τ −δ, z′ = z+τ −δ, z′ = z+τ ,
and z′ = 2r1−τ−z, respectively. Using (C.1) and (C.2) and the facts that 2r1−δ ≤ 2

√
d

and 2(r2− r1) + δ ≤ 2r2 ≤ 2
√
d yields that the previous term is bounded from above by

2√
r1r2

((
ln(4(2

√
d)) + ln

(
2δ−1

))
+ π + π +

(
ln(4(2

√
d)) + ln

(
2(2(r2 − r1) + δ)−1

)))
=

2√
r1r2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(r2 − r1) + δ)−1

))
≤ 2√

r1r2

(
ln
(
δ−1
)

+ ln
(
(2(r2 − r1) + δ)−1

)
+O(1)

)
≤ κ√

r1r2

(
ln
(
δ−1
)

+ ln
(
(2(r2 − r1) + δ)−1

))
,
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where the last inequality assumes that κ is a large enough constant.
Case 2.2: δ ∈ (0,max{0, 2(r1 − r2)}).

We obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
r1r2

∫ 2r2−τ+δ

−τ+δ

(
1√
τ + z

+
1√

2r1 − τ − z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2√
r1r2

(∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz +

∫ 2r2−τ+δ

−τ+δ

1√
(2r1 − τ − z)(τ + z − δ)

dz

+

∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz +

∫ 2r2−τ+δ

−τ+δ

1√
(2r1 − τ − z)(2r2 − τ − z + δ)

dz

)

=
2√
r1r2

(∫ 2r2

0

1√
(z′ + δ)z′

dz′ +

∫ 2r2

0

1√
(2r1 − δ − z′)z′

dz′

+

∫ 2r2

0

1√
(2r2 + δ − z′)z′

dz′ +

∫ 2r2

0

1√
(2(r1 − r2)− δ + z′)z′

dz′

)
≤ 2√

r1r2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(r1 − r2)− δ)−1

))
≤ κ√

r1r2

(
ln
(
δ−1
)

+ ln
(
(2(r1 − r2)− δ)−1

))
.

For the four integrals, we used the substitutions z′ = z + τ − δ, z′ = z + τ − δ,
z′ = 2r2 − τ + δ − z, and z′ = 2r2 − τ + δ − z, respectively. Using (C.1) and (C.2) and
the facts that δ ≤ 2(r1 − r2) ≤ 2

√
d and 2(r1 − r2) − δ ≤ 2(r1 − r2) ≤ 2

√
d yields the

penultimate inequality. The last inequality follows for the same reasons as in Case 2.1.
Third case: r1 ≤ τ ≤ r2.

Since Z1 takes only values in the interval [−τ, 2r1 − τ ] and Z2 takes only values in
the interval [−τ, τ ], the random variable ∆ = Z1 − Z2 takes only values in the inter-
val [−2τ, 2r1]. For δ /∈ [−2τ, 2r1], the density of ∆ is trivially zero. As additionally, by
definition, δ ∈ (0, 1/2], we can assume 0 < δ ≤ min{1/2, 2r1} and

f∆|T=τ,R1=r1,R2=r2(δ) =

∫ 2r1−τ

−τ+δ
fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ) dz.

Using (C.3) and (C.4), we obtain the following upper bound on the density of ∆ for
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δ ∈ (0,min{1/2, 2r1}]:

f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
τr1

∫ 2r1−τ

−τ+δ

(
1√
τ + z

+
1√

2r1 − τ − z

)(
1√

τ − z + δ
+

1√
τ + z − δ

)
dz

=
2√
τr1

(∫ 2r1−τ

−τ+δ

1√
(τ + z)(τ − z + δ)

dz +

∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(τ − z + δ)

dz

+

∫ 2r1−τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz +

∫ 2r1−τ

−τ+δ

1√
(2r1 − τ − z)(τ + z − δ)

dz

)

=
2√
τr1

(∫ 2r1

δ

1√
z′(2τ + δ − z′)

dz′ +

∫ 2r1−δ

0

1√
z′(2(τ − r1) + δ + z′)

dz′

+

∫ 2r1−δ

0

1√
(z′ + δ)z′

dz′ +

∫ 2r1−δ

0

1√
(2r1 − δ − z′)z′

dz′

)
≤ 2√

τr1

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(τ − r1) + δ)−1

))
≤ κ√

τr1
· ln
(
δ−1
)
.

For the four integrals, we used the substitutions z′ = z + τ , z′ = 2r1 − τ − z, z′ =
z + τ − δ, and z′ = z + τ − δ, respectively. Using (C.1) and (C.2) and the facts that
2(τ − r1) + δ ≤ 2τ ≤ 2

√
d and δ ≤ 2r1 ≤ 2

√
d yields the penultimate inequality. The

last inequality follows for the same reasons as in Case 2.1.
Fourth case: r2 ≤ τ ≤ r1.

Since Z1 takes only values in the interval [−τ, τ ] and Z2 takes only values in the interval
[−τ, 2r2−τ ], the random variable ∆ = Z1−Z2 takes only values in the interval [−2r2, 2τ ].
For δ /∈ [−2r2, 2τ ], the density of ∆ is trivially zero. As additionally, by definition, δ ∈
(0, 1/2], we can assume 0 < δ ≤ min{1/2, 2τ} and

f∆|T=τ,R1=r1,R2=r2(δ) =

∫ min{2r2−τ+δ,τ}

−τ+δ
fZ|T=τ,R=r1(z) · fZ|T=τ,R=r2(z − δ) dz.

The limits of the integral follow because fZ|T=τ,R=r1(z) is only nonzero for z ∈ [−τ, τ ]
and fZ|T=τ,R=r2(z − δ) is only nonzero for z ∈ [−τ + δ, 2r2 − τ + δ]. The intersection of
these two intervals is [−τ + δ,min{2r2 − τ + δ, τ}].

Case 4.1: δ ∈ (0, 2(τ − r2)).
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Using (C.3) and (C.4), we obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
τr2

∫ 2r2−τ+δ

−τ+δ

(
1√
τ − z +

1√
τ + z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2√
τr2

(∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz +

∫ 2r2−τ+δ

−τ+δ

1√
(τ − z)(τ + z − δ)

dz

+

∫ 2r2−τ+δ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz +

∫ 2r2−τ+δ

−τ+δ

1√
(τ − z)(2r2 − τ − z + δ)

dz

)

=
2√
τr2

(∫ 2r2

0

1√
(z′ + δ)z′

dz′ +

∫ 2r2

0

1√
(2τ − δ − z′)z′

dz′

+

∫ 2r2

0

1√
(2r2 + δ − z′)z′

dz′ +

∫ 2r2

0

1√
(2(τ − r2)− δ + z′)z′

dz′

)
≤ 2√

τr2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(τ − r2)− δ)−1

))
≤ κ√

τr2

(
ln
(
δ−1
)

+ ln
(
(2(τ − r2)− δ)−1

))
.

For the four integrals, we used the substitutions z′ = z + τ − δ, z′ = z + τ − δ,
z′ = 2r2 − τ − z + δ, and z′ = 2r2 − τ − z + δ, respectively. Using (C.1) and (C.2) and
the facts that δ ≤ 2r2 ≤ 2

√
d and 2(τ − r2) − δ ≤ 2τ ≤ 2

√
d yields the penultimate

inequality. The last inequality follows for the same reasons as in Case 2.1.
Case 4.2: δ ∈ (2(τ − r2), 2τ ].
Using (C.3) and (C.4), we obtain the following upper bound on the density of ∆:

f∆|T=τ,R1=r1,R2=r2(δ)

≤ 2√
τr2

∫ τ

−τ+δ

(
1√
τ − z +

1√
τ + z

)(
1√

τ + z − δ
+

1√
2r2 − τ − z + δ

)
dz

=
2√
τr2

(∫ τ

−τ+δ

1√
(τ − z)(τ + z − δ)

dz +

∫ τ

−τ+δ

1√
(τ + z)(τ + z − δ)

dz

+

∫ τ

−τ+δ

1√
(τ − z)(2r2 − τ − z + δ)

dz +

∫ τ

−τ+δ

1√
(τ + z)(2r2 − τ − z + δ)

dz

)

=
2√
τr2

(∫ 2τ−δ

0

1√
(2τ − δ − z′)z′

dz′ +

∫ 2τ−δ

0

1√
(z′ + δ)z′

dz′

+

∫ 2τ−δ

0

1√
z′(2(r2 − τ) + δ + z′)

dz′ +

∫ 2τ

δ

1√
z′(2r2 + δ − z′)

dz′

)
≤ 2√

τr2

(
2π + 2 ln(8

√
d) + ln

(
2δ−1

)
+ ln

(
2(2(r2 − τ) + δ)−1

))
≤ κ√

τr2

(
ln
(
δ−1
)

+ ln
(
(2(r2 − τ) + δ)−1

))
.

61



For the four integrals, we used the substitutions z′ = τ +z−δ, z′ = τ +z−δ, z′ = τ −z,
and z′ = τ + z, respectively. Using (C.1) and (C.2) and the facts that δ ≤ 2τ ≤ 2

√
d

and 2(r2 − τ) + δ ≤ 2r2 ≤ 2
√
d yields the penultimate inequality. The last inequality

follows for the same reasons as in Case 2.1.
Altogether, this yields the lemma.

C.2 Proof of Lemma 4.11

First, we derive the following lemma, which gives bounds on the conditional density of
the random variable ∆ when only one of the radii R1 and R2 is given.

Lemma C.1. Let r1, r2, τ ∈ (0,
√
d) and δ ∈ (0, 1/2]. In the following, let κ denote a

sufficiently large constant.

a) The density of ∆ under the conditions T = τ and R1 = r1 is bounded by

f∆|T=τ,R1=r1(δ) ≤
{

κ√
τr1
· ln
(
δ−1
)

if r1 ≤ τ,
κ
τ · ln

(
δ−1
)

if r1 ≥ τ.

b) The density of ∆, under the conditions T = τ and R2 = r2, is bounded by

f∆|T=τ,R2=r2(δ) ≤
{

κ√
τr2
· (ln

(
δ−1
)

+ ln |2(τ − r2)− δ|−1) if r2 ≤ τ,
κ
τ · ln

(
δ−1
)

if r2 ≥ τ.

Proof. a) We can write the density of ∆ under the conditions T = τ and R1 = r1 as

f∆|T=τ,R1=r1(δ) =

∫ √d
0

fR2(r2) · f∆|T=τ,R1=r1,R2=r2(δ) dr2, (C.5)

where fR2 denotes the density of the length R2 = d(O,Q2). The point Q2 is chosen
uniformly at random from a hyperball with radius

√
d centered at the point O. The

volume of a d-dimensional hyperball of radius r ≥ 0 is Vd(r) = αrd for α = πd/2

Γ(d/2+1)

(see [BSMM07]). The probability distribution FR2(r) of R2 is, for r ∈ [0,
√
d], propor-

tional to Vd(r). Let FR2(r) = βαrd for some β ≥ 0. Since FR2(
√
d) = 1, it must be true

that β = 1
αdd/2

. This yields, for r ∈ [0,
√
d],

fR2(r) =
d

dr
FR2(r) = βαdrd−1 =

rd−1

dd/2−1
.

Together with (C.5) this implies

f∆|T=τ,R1=r1(δ) =

∫ √d
0

rd−1
2

dd/2−1
· f∆|T=τ,R1=r1,R2=r2(δ) dr2.
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We use Lemma 4.10 to bound this integral. For r1 ≤ τ , we obtain

f∆|T=τ,R1=r1(δ)

≤
∫ τ

0

rd−1
2

dd/2−1
· κ√

r1r2

(
ln
(
δ−1
)

+ ln |2(r1 − r2)− δ|−1
)
dr2

+

∫ √d
τ

rd−1
2

dd/2−1
· κ√

τr1
· ln
(
δ−1
)
dr2

=
κ ln

(
δ−1
)

dd/2−1√r1

∫ τ

0
r
d−3/2
2 dr2 +

κ

dd/2−1√r1

∫ τ

0
r
d−3/2
2 ln |2(r1 − r2)− δ|−1 dr2

+
κ ln

(
δ−1
)

dd/2−1√τr1

∫ √d
τ

rd−1
2 dr2.

The integral in the second line corresponds to the case r1 ≤ τ and r2 ≤ τ of Lemma 4.10
and the integral in the third line corresponds to the case r1 ≤ τ ≤ r2. Using the fact
that τ ≤

√
d = O(1) and ln

(
δ−1
)
≥ ln(2) = Ω(1), the density f∆|T=τ,R1=r1(δ) can be

bounded from above by

κ ln
(
δ−1
)

dd/2−1√r1

∫ τ

0
(
√
d)d−3/2 dr2 +

κ

dd/2−1√r1

∫ τ

0
(
√
d)d−3/2 ln |2(r1 − r2)− δ|−1 dr2

+
κ ln

(
δ−1
)

dd/2−1√τr1

∫ √d
τ

(
√
d)d−1 dr2

=
O(1)√
r1
· ln
(
δ−1
)

+
O(1)√
r1
·
∫ τ

0
ln |2(r1 − r2)− δ|−1 dr2 +

O(1)√
τr1
· ln
(
δ−1
)
. (C.6)

In order to bound the integral in the second term, we use the following lemma.

Lemma C.2. Let f : R → R be a linear function of the form f(x) = ax + b for arbi-
trary a, b ∈ R with |a| ≥ 1. Furthermore, let c ∈ R and ε > 0 be arbitrary. Then∫ c+ε

c
ln

(
1

|f(x)|

)
dx ≤ ε

(
ln

(
2

ε

)
+ 1

)
.

Proof. First we substitute z for ax+ b in the integral:∫ c+ε

c
ln

(
1

|f(x)|

)
dx =

∫ c+ε

c
ln

(
1

|ax+ b|

)
dx =

1

a

∫ a(c+ε)+b

ac+b
ln

(
1

|z|

)
dz. (C.7)

We first consider the case a > 0. In this case, the integral
∫ B+aε
B ln(1/|z|) dz is max-

imized for B = −aε/2 because ln(1/|z|) is symmetric around 0 and monotonically
decreasing for z > 0. This yields

1

a

∫ a(c+ε)+b

ac+b
ln

(
1

|z|

)
dz ≤ 1

a

∫ aε/2

−aε/2
ln

(
1

|z|

)
dz =

2

a

∫ aε/2

0
ln

(
1

z

)
dz.

=
2

a
[z(ln(1/z) + 1)]

aε/2
0 =

2

a
· aε

2

(
ln

(
2

aε

)
+ 1

)
= ε

(
ln

(
2

aε

)
+ 1

)
.

63



For a < 0, the last integral in (C.7) can be rewritten as follows:

1

a

∫ a(c+ε)+b

ac+b
ln

(
1

|z|

)
dz =

1

|a|

∫ ac+b

a(c+ε)+b
ln

(
1

|z|

)
dz.

In this case the integral
∫ B
B+aε ln(1/|z|) dz is maximized for B = −aε/2 because ln(1/|z|)

is symmetric around 0 and monotonically decreasing for z > 0. This yields

1

|a|

∫ ac+b

a(c+ε)+b
ln

(
1

|z|

)
dz ≤ 1

|a|

∫ −aε/2
aε/2

ln

(
1

|z|

)
dz =

2

|a|

∫ |a|ε/2
0

ln

(
1

z

)
dz.

=
2

|a| [z(ln(1/z) + 1)]
|a|ε/2
0 =

2

|a| ·
|a|ε
2

(
ln

(
2

|a|ε

)
+ 1

)
= ε

(
ln

(
2

|a|ε

)
+ 1

)
.

Altogether this proves the lemma because |a| ≥ 1.

The previous lemma and (C.6) imply that the density f∆|T=τ,R1=r1(δ) is bounded
from above by

O(1)√
r1
· ln
(
δ−1
)

+
O(1)√
r1
· τ
(

ln

(
2

τ

)
+ 1

)
+
O(1)√
τr1
· ln
(
δ−1
)

=
O(1)√
r1
· ln
(
δ−1
)

+
O(1)√
r1

+
O(1)√
τr1
· ln
(
δ−1
)
,

where we used τ ≤
√
d = O(1) (which implies τ ln(2/τ) = O(1)) for the equality. For a

sufficiently large constant κ′ we can bound the previous term from above by

κ′√
τr1
· ln
(
δ−1
)
,

where we used ln
(
δ−1
)
≥ ln(2) = Ω(1) and τ ≤

√
d.

For τ ≤ r1 we obtain

f∆|T=τ,R1=r1(δ) ≤
∫ τ

0

rd−1
2

dd/2−1
· κ√

τr2

(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)
dr2

+

∫ √d
τ

rd−1
2

dd/2−1
· κ
τ
· ln
(
δ−1
)
dr2,

where the integral in the first line corresponds to the case r2 ≤ τ ≤ r1 of Lemma 4.10 and
the integral in the second line corresponds to the case τ ≤ r1 and τ ≤ r2. Analogously
to the case r1 ≤ τ , this implies that the density f∆|T=τ,R1=r1(δ) is bounded from above
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by

κ

dd/2−1
√
τ

∫ τ

0
r
d−3/2
2

(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)
dr2

+
κ

dd/2−1τ
·
∫ √d
τ

rd−1
2 ln

(
δ−1
)
dr2

≤ κ

dd/2−1
√
τ

∫ τ

0
(
√
d)d−3/2

(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)
dr2

+
κ

dd/2−1τ
·
∫ √d
τ

(
√
d)d−1 ln

(
δ−1
)
dr2

=
O(1)√
τ
· ln
(
δ−1
)

+
O(1)√
τ
·
∫ τ

0
ln |2(τ − r2)− δ|−1 dr2 +

O(1)

τ
· ln
(
δ−1
)
.

By Lemma C.2 this is bounded from above by

O(1)√
τ
· ln
(
δ−1
)

+
O(1)√
τ
· τ
(

ln

(
2

τ

)
+ 1

)
+
O(1)

τ
· ln
(
δ−1
)
≤ κ′

τ
ln
(
δ−1
)
,

for a sufficiently large constant κ′.
b) We can write the density of ∆ under the conditions T = τ and R2 = r2 as

f∆|T=τ,R2=r2(δ) =

∫ √d
0

rd−1
1

dd/2−1
· f∆|T=τ,R1=r1,R2=r2(δ) dr1. (C.8)

For r2 ≤ τ and sufficiently large constants κ′ and κ′′, we obtain

f∆|T=τ,R2=r2(δ) ≤
∫ τ

0

rd−1
1

dd/2−1
· κ√

r1r2

(
ln
(
δ−1
)

+ ln |2(r1 − r2)− δ|−1
)
dr1

+

∫ √d
τ

rd−1
1

dd/2−1
· κ√

τr2

(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)
dr1.

The integral in the first line corresponds to the case r1 ≤ τ and r2 ≤ τ of Lemma 4.10
and the integral in the second line corresponds to the case r2 ≤ τ ≤ r1. Using that τ ≤√
d = O(1) and ln

(
δ−1
)
≥ ln(2) = Ω(1) yields that the density f∆|T=τ,R2=r2(δ) is

bounded from above by

O(1)√
r2

ln
(
δ−1
)

+
O(1)√
r2

∫ √d
0

ln |2(r1 − r2)− δ|−1 dr1 +
O(1)√
τr2

(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)

≤ O(1)√
τr2

(∫ √d
0

ln |2(r1 − r2)− δ|−1 dr1 + ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1

)
.

Together with Lemma C.2 this implies the following upper bound on the density f∆|T=τ,R2=r2(δ):

O(1)√
τr2

(√
d

(
ln

(
2√
d

)
+ 1

)
+ ln

(
δ−1
)

+ ln |2(τ − r2)− δ|−1

)
≤ κ′√

τr2

(
ln
(
δ−1
)

+ ln |2(τ − r2)− δ|−1
)
,
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for a sufficiently large constant κ′.
For τ ≤ r2 and a sufficiently large constant κ′, we obtain by (C.8) and Lemma 4.10

f∆|T=τ,R2=r2(δ) ≤
∫ τ

0

rd−1
1

dd/2−1
· κ√

τr1
· ln
(
δ−1
)
dr1 +

∫ √d
τ

rd−1
1

dd/2−1
· κ
τ
· ln
(
δ−1
)
dr1.

The first integral corresponds to the case r1 ≤ τ ≤ r2 of Lemma 4.10 and the second
integral corresponds to the case τ ≤ r1 and τ ≤ r2. Using that τ ≤

√
d = O(1) yields

that the previous term is bounded from above by

κ

dd/2−1
√
τ
· ln
(
δ−1
) ∫ τ

0
r
d−3/2
1 dr1 +

κ

dd/2−1τ
· ln
(
δ−1
) ∫ √d

τ
rd−1

1 dr1

κ

dd/2−1
√
τ
· ln
(
δ−1
) ∫ τ

0
(
√
d)d−3/2 dr1 +

κ

dd/2−1τ
· ln
(
δ−1
) ∫ √d

τ
(
√
d)d−1 dr1

≤κ
′

τ
· ln
(
δ−1
)
,

for a sufficiently large constant κ′.

Now we are ready to prove Lemma 4.11.

Proof of Lemma 4.11. a) In order to prove part a), we integrate f∆|T=τ,R1=r(δ) over all
values τ that T can take. We denote by fT the density of the length T = d(O,P ). We

have argued in the proof of Lemma C.1 that, for τ ∈ [0,
√
d], fR2(τ) = fT (τ) = τd−1

dd/2−1 .
We obtain, for a sufficiently large constant κ′,

f∆|R1=r(δ) =

∫ √d
0

fT (τ) · f∆|T=τ,R1=r(δ) dτ

=

∫ √d
0

τd−1

dd/2−1
· f∆|T=τ,R1=r(δ) dτ

≤
∫ r

0

τd−1

dd/2−1
· κ
τ
· ln
(
δ−1
)
dτ +

∫ √d
r

τd−1

dd/2−1
· κ√

τr
· ln
(
δ−1
)
dτ

≤
∫ √d

0

κ(
√
d)d−2

dd/2−1
· ln
(
δ−1
)
dτ +

∫ √d
0

(
√
d)d−3/2

dd/2−1
· κ√

r
· ln
(
δ−1
)
dτ

≤ O(1) · ln
(
δ−1
)

+
O(1)√
r

ln
(
δ−1
)
≤ κ′√

r
· ln
(
δ−1
)
,

where we used Lemma C.1 a) for the first inequality, and 0 ≤ r ≤
√
d = O(1)

and ln
(
δ−1
)
≥ ln(2) = Ω(1) for the other inequalities.
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Furthermore, we integrate f∆|T=τ,R2=r(δ) over all values τ that T can take:

f∆|R2=r(δ) =

∫ √d
0

τd−1

dd/2−1
· f∆|T=τ,R2=r(δ) dτ

≤
∫ r

0

τd−1

dd/2−1
· κ
τ
· ln
(
δ−1
)
dτ

+

∫ √d
r

τd−1

dd/2−1
· κ√

τr
(ln
(
δ−1
)

+ ln |2(τ − r)− δ|−1) dτ

≤ O(1) · ln
(
δ−1
)

+
O(1)√
r
· ln
(
δ−1
)

+
O(1)√
r

√
d

(
ln

(
2√
d

)
+ 1

)
≤ κ′√

r
· ln
(
δ−1
)
,

where we used Lemma C.1 b) for the first inequality, and Lemma C.2, 0 ≤ r ≤
√
d =

O(1), and ln
(
δ−1
)
≥ ln(2) = Ω(1) for the second and third inequalities.

b) Let fR1(r) = rd−1

dd/2−1 denote the density of the length R1 = d(O,Q1). For a
sufficiently large constant κ′,

f∆|T=τ (δ) =

∫ √d
0

fR1(r) · f∆|T=τ,R1=r(δ) dr

=

∫ √d
0

rd−1

dd/2−1
· f∆|T=τ,R1=r(δ) dr

≤
∫ τ

0

rd−1

dd/2−1
· κ√

τr
· ln
(
δ−1
)
dr +

∫ √d
τ

rd−1

dd/2−1
· κ
τ
· ln
(
δ−1
)
dr

≤ O(1)√
τ
· ln
(
δ−1
)

+
O(1)

τ
· ln
(
δ−1
)
≤ κ′

τ
· ln
(
δ−1
)
.

For the penultimate inequality we used 0 ≤ τ ≤
√
d = O(1) and ln

(
δ−1
)
≥ ln(2) = Ω(1).

c) Using part b), for a sufficiently large constant κ′,

f∆(δ) =

∫ √d
0

fT (τ) · f∆|T=τ (δ) dτ

≤
∫ √d

0

τd−1

dd/2−1
· κ
τ
· ln
(
δ−1
)
dτ ≤ κ′ · ln

(
δ−1
)
.

d) Let fRi denote the density of Ri. Using Lemma 4.9, we obtain

fZi|T=τ (z) =

∫ τ

r=0
fRi(r) · fZ|T=τ,R=r(z) dr

≤
∫ τ

r= z+τ
2

rd−1

dd/2−1

√
2

(τ + z)(2r − τ − z) dr +

∫ √d
r=τ

fRi(r)

√
2

τ2 − z2
dr.

The lower limit of the first integral follows from the fact that, according to Lemma 4.9,
z always takes a value in the interval (−τ,min{τ, 2Ri − τ}). Since z ≤ 2Ri − τ is
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equivalent to Ri ≥ z+τ
2 , we can bound fZi|T=τ (z) from above by√

2

τ + z
d1/2

∫ τ

r= z+τ
2

√
1

2r − τ − z dr +

√
2

τ2 − z2

∫ √d
r=τ

fRi(r) dr

≤
√

2

τ + z
d1/2

∫ τ

r= z+τ
2

√
1

2r − τ − z dr +

√
2

τ2 − z2
,

where we used rd−1 ≤ τd−1 ≤ (
√
d)d−1 and the fact that the integral over a density is

at most 1. Because∫ τ

z+τ
2

√
1

2r − τ − z dr =
1

2

∫ τ−z

x=0

√
1

x
dx ≤ 1

2

∫ √d
0

√
1

x
dx = [

√
x]
√
d

0 = d1/4 = O(1),

we can bound the conditional density of Zi from above by

fZi|T=τ (z) ≤
√

2

τ + z
d1/2 ·O(1) +

√
2

τ2 − z2

=
O(1)√
τ + z

+
O(1)√
τ2 − z2

≤ κ′√
τ2 − z2

,

for a large enough constant κ′, where we used

τ + z =
τ2 − z2

τ − z ≥
τ2 − z2

√
d

for the last inequality, which holds because τ ≤
√
d and z ≥ 0.

D Negatively Associated Random Variables

Dubhashi and Ranjan [DR98] define negatively associated random variables as follows.

Definition D.1 ([DR98], Definition 3). The random variables X1, . . . , Xn are negatively
associated if for every two disjoint index sets I, J ⊆ [n],

E [f(Xi, i ∈ I) · g(Xj , j ∈ J)] ≤ E [f(Xi, i ∈ I)] ·E [g(Xj , j ∈ J)] ,

for all functions f : R|I| → R and g : R|J | → R that are both non-decreasing or both
non-increasing.

In Section 5, we used the following result from Dubhashi and Ranjan’s paper.

Lemma D.2 ([DR98], Proposition 6). The Chernoff-Hoeffding bounds are applicable to
sums of random variables that satisfy the negative association condition.

It remains to show that the random variables X1, . . . , Xk defined in Section 5 satisfy
the negative association condition. Remember that these variables come from a balls-
into-bins process in which n balls are put independently into k bins. Each ball has its
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own probability distribution on the k bins and the 0-1-variable Xi indicates whether
bin i contains at least one ball.

In order to show that the variables X1, . . . , Xk are negatively associated, we follow
the same line of arguments as Lenzen and Wattenhofer [LW10], who showed the same
statement for a balls-into-bins process in which the balls are put uniformly at random
into the bins. The proof is based on the following statements proven in [DR98].

Lemma D.3. a) If X1, . . . , Xn are 0-1-random variables such that
∑
Xi = 1, then

X1, . . . , Xn are negatively associated.

b) If X and Y are sets of negatively associated random variables and if the random
variables in X and Y are mutually independent, then X ∪ Y is also negatively
associated.

c) Assume that the random variables X1, . . . , Xn are negatively associated and let
I1, . . . , Ik ⊆ [n] be mutually disjoint index sets for some k ∈ N. For j ∈ [k],
let hj : R|Ij | → R be functions that are all non-decreasing or all non-increasing,
and define Yj = hj(Xi, i ∈ Ij). Then the random variables Y1, . . . , Yk are also
negatively associated.

Based on this lemma, we prove the theorem about the balls-into-bins process.

Theorem D.4. Consider a balls-into-bins process in which n balls are put independently
into k bins. Each ball has its own probability distribution on the k bins and the 0-1-
variable Xi indicates whether bin i contains at least one ball. The random variables
X1, . . . , Xk are negatively associated.

Proof. First we define for each bin i ∈ [k] and each ball j ∈ [n] a 0-1-variables Xj
i

indicating whether ball j ends up in bin i. For a ball j ∈ [n], the random variables
Xj

1 , . . . , X
j
k are negatively associated according to Lemma D.3 a). Since the balls are

put independently into the bins, all random variables Xj
i for i ∈ [k] and j ∈ [n] are

negatively associated according to Lemma D.3 b).
Now we define for each bin i ∈ [k] the set Ii = {X1

i , . . . , X
n
i } and the function

hi(X
1
i , . . . , X

n
i ) =

{
1 if X1

i + · · ·+Xn
i ≥ 1,

0 if X1
i + · · ·+Xn

i = 0.

Observe thatXi = hi(X
1
i , . . . , X

n
i ). As these functions are non-decreasing Lemma D.3 c)

implies that the random variables X1, . . . , Xk are negatively associated.
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